Inner automorphisms of non-commutative analogues of the additive group of rational numbers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 12-14
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the inner automorphisms group of the group $A(m,n)$ are
characteristic subgroup in $Aut(A(m,n))$ for all $m > 1$ and odd $n\geq 1003,$ where
the groups $A(m,n)$ are known non-commutative analogues of the additive group
of rational numbers.
Keywords:
automorphisms group, inner automorphism, characteristic subgroup.
@article{UZERU_2015_1_a2,
author = {A. E. Grigoryan},
title = {Inner automorphisms of non-commutative analogues of the additive group of rational numbers},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {12--14},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/}
}
TY - JOUR AU - A. E. Grigoryan TI - Inner automorphisms of non-commutative analogues of the additive group of rational numbers JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 12 EP - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/ LA - en ID - UZERU_2015_1_a2 ER -
%0 Journal Article %A A. E. Grigoryan %T Inner automorphisms of non-commutative analogues of the additive group of rational numbers %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2015 %P 12-14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/ %G en %F UZERU_2015_1_a2
A. E. Grigoryan. Inner automorphisms of non-commutative analogues of the additive group of rational numbers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 12-14. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/