Inner automorphisms of non-commutative analogues of the additive group of rational numbers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 12-14

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the inner automorphisms group of the group $A(m,n)$ are characteristic subgroup in $Aut(A(m,n))$ for all $m > 1$ and odd $n\geq 1003,$ where the groups $A(m,n)$ are known non-commutative analogues of the additive group of rational numbers.
Keywords: automorphisms group, inner automorphism, characteristic subgroup.
@article{UZERU_2015_1_a2,
     author = {A. E. Grigoryan},
     title = {Inner automorphisms of non-commutative analogues of the additive group of rational numbers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--14},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/}
}
TY  - JOUR
AU  - A. E. Grigoryan
TI  - Inner automorphisms of non-commutative analogues of the additive group of rational numbers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 12
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/
LA  - en
ID  - UZERU_2015_1_a2
ER  - 
%0 Journal Article
%A A. E. Grigoryan
%T Inner automorphisms of non-commutative analogues of the additive group of rational numbers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 12-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/
%G en
%F UZERU_2015_1_a2
A. E. Grigoryan. Inner automorphisms of non-commutative analogues of the additive group of rational numbers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 12-14. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/