Inner automorphisms of non-commutative analogues of the additive group of rational numbers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 12-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the inner automorphisms group of the group $A(m,n)$ are characteristic subgroup in $Aut(A(m,n))$ for all $m > 1$ and odd $n\geq 1003,$ where the groups $A(m,n)$ are known non-commutative analogues of the additive group of rational numbers.
Keywords: automorphisms group, inner automorphism, characteristic subgroup.
@article{UZERU_2015_1_a2,
     author = {A. E. Grigoryan},
     title = {Inner automorphisms of non-commutative analogues of the additive group of rational numbers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--14},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/}
}
TY  - JOUR
AU  - A. E. Grigoryan
TI  - Inner automorphisms of non-commutative analogues of the additive group of rational numbers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 12
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/
LA  - en
ID  - UZERU_2015_1_a2
ER  - 
%0 Journal Article
%A A. E. Grigoryan
%T Inner automorphisms of non-commutative analogues of the additive group of rational numbers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 12-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/
%G en
%F UZERU_2015_1_a2
A. E. Grigoryan. Inner automorphisms of non-commutative analogues of the additive group of rational numbers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 12-14. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a2/

[1] J. Dyer, E. Formanek, “The Automorphism Group of a Free Group is Complete”, J. London Math. Soc., 11:2 (1975), 181–190 | DOI | MR | Zbl

[2] J. Dyer, E. Formanek, “Characteristic Subgroups and Complete Automorphism Groups”, Amer. J. Math., 99:4 (1977), 713–753 | DOI | MR | Zbl

[3] V.S. Atabekyan, “The Groups of Automorphisms are Complete for Free Burnside Groups of Odd Exponents $n = 1003$”, International Journal of Algebra and Computation, 23:6 (2013), 1485–1496 | DOI | MR | Zbl

[4] V.S. Atabekyan, “The Automorphism Tower Problem for Free Periodic Groups”, Proceedings of the YSU. Physical and Mathematical Sciences, 2013, no. 2, 3–7 | Zbl

[5] D.J.S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Second edition, Springer-Verlag, NY, 1996 | DOI | MR

[6] S.I. Adian, “On Some Torsion-Free Groups”, Mathematics of the USSR-Izvestiya, 5:3 (1971), 475–484 | DOI

[7] S.I. Adian, The Burnside Problem and Identities in Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin-NY, 1979, 336 pp. | MR

[8] V.S. Atabekyan, “The Normalizers of Free Subgroups of Free Burnside Groups of Odd Period $n = 1003$”, Journal of Mathematical Sciences, 166:6 (2010), 691–703 | DOI | MR | Zbl