Forced convection in nematics liquid crystals in the absence of reorientation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 56-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of forced convection in a cell of plane-parallel layer of nematic liquid crystal, both the boundaries of which are free and isothermal, has been discussed. However much artificial seem the boundary conditions first proposed by Rayleigh, these permit an obtaining of simple exact solution of the boundary value problem, by means of which some most important features of the problem are elucidated. In particular it proved possible to excite convective motions in the absence of reorientation of the liquid crystal director.
Keywords: nematic liquid crystals, hydrodynamics, director reorientation.
@article{UZERU_2014_3_a9,
     author = {M. R. Hakobyan},
     title = {Forced convection in nematics liquid crystals in the absence of reorientation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {56--61},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a9/}
}
TY  - JOUR
AU  - M. R. Hakobyan
TI  - Forced convection in nematics liquid crystals in the absence of reorientation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 56
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a9/
LA  - en
ID  - UZERU_2014_3_a9
ER  - 
%0 Journal Article
%A M. R. Hakobyan
%T Forced convection in nematics liquid crystals in the absence of reorientation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 56-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_3_a9/
%G en
%F UZERU_2014_3_a9
M. R. Hakobyan. Forced convection in nematics liquid crystals in the absence of reorientation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 56-61. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a9/

[1] G.Z. Gershuni, E.M. Zhukhovitskii, Convective Stability of an Incompressible Liquid, Nauka, M., 1972 (in Russian)

[2] Y. Jaluria, Natural Convection, Pergamon Press, Oxford, 1980

[3] A.V. Getling, Rayleigh-Benard Convection, Editorial URSS, M., 1999 (in Russian) | MR

[4] A.A. Vedyonov, G.G. Gladush, Physical Processes at the Laser Material Processing, Energoatomizdat, M., 1985 (in Russian)

[5] R.B. Haroutyunyan, B.Yu. Baranov, L.A. Balashov el all., Influence of Laser Radiation on Materials, Nauka, M., 1989 (in Russian)

[6] H. Bènard, “Les Tourbillons Cellulaires dans une Nappe Liquide”, Revue Generale des Sciences, Pares at Appliguees, 11 (1900), 1309–1328

[7] H. Bènard, “Les Tourbillons Cellulaires dans une Nappe Liquide Transportant de la Chaleur par Convection en Règime Permanent”, Ann. Chem. Phys., 23 (1901), 62–144

[8] J.W.S. Rayleigh, “On the Convective Currents in a Horizontal Layer of Fuid when the Higher Temperature is on the Under Side”, Phil. Mag., 32 (1916), 529–546 | DOI

[9] E.L. Koschmieder, “Bènard Convection”, Adv. Chem. Phys., 26 (1974), 177–212

[10] C. Normand, Y. Pomeau, M.G. Velarde, “Convective Instability: A Physicist's Approach”, Rev. of Mod. Phys., 49 (1977), 581–624 | DOI | MR

[11] G. Nicolis, G. Dewel, J.W. Turner, “Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics”, 17 Int. Solvay Conf., Wiley, New York, 1981

[12] H.L. Swinney, J.P. Gollub, Hydrodynamic Instabilities and the Transition to Turbulence, Springer, Berlin, 1981 | MR | Zbl

[13] W.R. Peltier, Fluid Mechanics of Astrophysics and Geophysics, 4: Mantle Convection, Plate Tectonics, and Global Dynamics, Gordon and Breach, New York, 1989

[14] S.I. Vibornov, Yu.V. Sanochkin, “Termocapillary Cell in the Hard Liquid, Heating from Above”, Mechanics of Liquid and Gass, 1 (1985), 176 (in Russian)

[15] C.R. Heiple, J.R. Roper, R.T. Stagner, R.J. Aden, “Surface Active Element Effects on the Shape of GTA, Laser, and Electron Beam Welds”, Welding J., 62 (1983), 572

[16] E. Dubois-Violette, G. Durand, E. Guyon, P. Manneville, P. Pieranski, Solid State Physics, v. 14, ed. L. Liebert, Academic, New York, 1978

[17] P.J. Barratt, “Bènard Convection in Liquid Crystals”, Liq. Cryst., 4 (1989), 223 | DOI

[18] L. Kramer, W. Pesch, “Convection Instabilities in Nematic Liquid Crystals”, Annu. Rev. Fluid Mech., 27 (1995), 515–539 | DOI | MR

[19] G. Ahlers, Pattern Formation in Liquid Crystals, eds. L. Kramer, A. Buta, Springer, Berlin, 1996

[20] E. Dubois-Violette, M. Gabay, “The Thermal Oscillatory Instability in a Homeotropic Nematic: an Inverse Bifurcation”, J. Physique, 43 (1982), 1305–1317 | DOI

[21] J. Salan, E. Guyon, “Homeotropic Nematics Heated from Above Under Magnetic Fields: Convective Thresholds and Geometry”, J. Fluid Mech., 126 (1983), 13–26 | DOI

[22] L. Thomas, W. Pesch, G. Ahlers, “Rayleigh–Benard Convection in a Homeotropically Aligned Nematic Liquid Crystal”, Phys. Rev. E, 58 (1998), 5885–5897 | DOI

[23] T.-S. Lin, L.J. Cummings, A.J. Archer, L. Kondic, U. Thiele, “Note on the Hydrodynamic Description of Thin Nematic Films: Strong Anchoring Model”, Physics. Fluid Dynamics, 2013, arXiv: 1301.4110v3 [physics.flu-dyn]

[24] L. Kondic, U. Thiele, L.J. Cummings, “Modelling Spreading Dynamics of Nematic Liquid Crystals in Three Spatial Dimensions”, Journal of Fluid Mechanics, 729 (2013), 214–230 | DOI | MR | Zbl

[25] M.R. Hakobyan, R.B. Alaverdyan, Yu.S. Chilingaryan, R.S. Hakobyan, “Gravitational and Thermocapillary Mechanisms of Hydrodynamic Motions in Liquid Crystals Induced by Laser with a Spatially Periodic Intensity Structure”, J. Contemp. Phys., 49:3 (2014), 112–120 | DOI