The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 24-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the $C^*$-subalgebra $\mathfrak{T}_m$ of the Toeplitz algebra $\mathfrak{T}$ generated by monomials, which have an index divisible by $m$. We present the algebra $\mathfrak{T}_m$ as a crossed product: $\mathfrak{T}_m=\varphi(A)\times_{\delta_m}\mathbb{Z}$, where $A=C_0 (\mathbb{Z}_+)\oplus\mathbb{C}I$ is $C^*$-algebra of all continuous functions on $\mathbb{Z}_+$, which have a finite limit at infinity. In the case $m=1$ we obtain that $\mathfrak{T}=\varphi(A)\times_{\delta_1}\mathbb{Z}$, which is an analogue of Coburn’s theorem.
Keywords:
crossed product, finitely representable, Toeplitz algebra, $C^*$-algebra, transfer operator.
Mots-clés : index of monomial, coefficient algebra
Mots-clés : index of monomial, coefficient algebra
@article{UZERU_2014_3_a4,
author = {K. H. Hovsepyan},
title = {The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {24--30},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/}
}
TY - JOUR
AU - K. H. Hovsepyan
TI - The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product
JO - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY - 2014
SP - 24
EP - 30
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/
LA - en
ID - UZERU_2014_3_a4
ER -
K. H. Hovsepyan. The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 24-30. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/