Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2014_3_a4, author = {K. H. Hovsepyan}, title = {The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {24--30}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/} }
TY - JOUR AU - K. H. Hovsepyan TI - The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2014 SP - 24 EP - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/ LA - en ID - UZERU_2014_3_a4 ER -
K. H. Hovsepyan. The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 24-30. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/
[1] G.J. Murphy, “The Crossed Product of a $C^*$-Algebra by an Endomorphism”, Integral Equations Operator Theory, 24:3 (1996), 298–319 | DOI | MR | Zbl
[2] W.L. Paschke, “The Crossed Product of a $C^*$-Algebra by an Endomorphism”, Proc. Amer. Math. Soc., 80:1 (1980), 113–118 | MR | Zbl
[3] P.J. Stacey, “Crossed Products of $C^*$-Algebras by Endomorphisms”, J. Austral. Math. Soc. Ser. A, 54:2 (1993), 204–212 | DOI | MR | Zbl
[4] R. Exel, “A New Look at the Crossed-Product of a $C^*$-Algebra by an Endomorphism”, Ergodic Theory Dynam. Systems, 23:6 (2003), 1733–1750 | DOI | MR | Zbl
[5] A.V. Lebedev, A. Odzijewicz, “Extensions of $C^*$-Algebras by Partial Isometries”, Matem. Sbor., no. 195, 951–982 | MR | Zbl
[6] A.B. Antonevich, V.I. Bakhtin, A.V. Lebedev, “Crossed Product of a $C^*$-Algebra by an Endomorphism, Coefficient Algebras and Transfer Operators”, Matem. Sbor., 202 (2011), 1253–1283 | DOI | MR | Zbl
[7] M.A. Aukhadiev, S.A. Grigorian, E.V. Lipacheva, “Infinite-Dimensional Compact Quantum Semigroup”, Lobachevskii Journal of Mathematics, 2011, no. 4, 304–316 | MR | Zbl
[8] L.A. Coburn, “The $C^*$-Algebra Generated by an Isometry”, Bull. Amer. Math. Soc., 1967, no. 73, 722–726 | DOI | MR | Zbl