The $C^*$-algebra $\mathfrak{T}_m$ as a crossed product
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 24-30

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the $C^*$-subalgebra $\mathfrak{T}_m$ of the Toeplitz algebra $\mathfrak{T}$ generated by monomials, which have an index divisible by $m$. We present the algebra $\mathfrak{T}_m$ as a crossed product: $\mathfrak{T}_m=\varphi(A)\times_{\delta_m}\mathbb{Z}$, where $A=C_0 (\mathbb{Z}_+)\oplus\mathbb{C}I$ is $C^*$-algebra of all continuous functions on $\mathbb{Z}_+$, which have a finite limit at infinity. In the case $m=1$ we obtain that $\mathfrak{T}=\varphi(A)\times_{\delta_1}\mathbb{Z}$, which is an analogue of Coburn’s theorem.
Keywords: crossed product, finitely representable, Toeplitz algebra, $C^*$-algebra, transfer operator.
Mots-clés : index of monomial, coefficient algebra
@article{UZERU_2014_3_a4,
     author = {K. H. Hovsepyan},
     title = {The  $C^*$-algebra $\mathfrak{T}_m$ as a crossed product},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {24--30},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/}
}
TY  - JOUR
AU  - K. H. Hovsepyan
TI  - The  $C^*$-algebra $\mathfrak{T}_m$ as a crossed product
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 24
EP  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/
LA  - en
ID  - UZERU_2014_3_a4
ER  - 
%0 Journal Article
%A K. H. Hovsepyan
%T The  $C^*$-algebra $\mathfrak{T}_m$ as a crossed product
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 24-30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/
%G en
%F UZERU_2014_3_a4
K. H. Hovsepyan. The  $C^*$-algebra $\mathfrak{T}_m$ as a crossed product. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 24-30. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a4/