Bohr’s theorem for double trigonometric interpolation polynomials
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 13-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

H. Bohr’s Theorem on uniform convergence of double trigonometric interpolation polynomials is proved.
Keywords: trigonometric interpolation, homeomorphism
Mots-clés : superposition, convergence.
@article{UZERU_2014_2_a1,
     author = {A. R. Nurbekyan},
     title = {Bohr{\textquoteright}s theorem for double trigonometric interpolation polynomials},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {13--23},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a1/}
}
TY  - JOUR
AU  - A. R. Nurbekyan
TI  - Bohr’s theorem for double trigonometric interpolation polynomials
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 13
EP  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a1/
LA  - en
ID  - UZERU_2014_2_a1
ER  - 
%0 Journal Article
%A A. R. Nurbekyan
%T Bohr’s theorem for double trigonometric interpolation polynomials
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 13-23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a1/
%G en
%F UZERU_2014_2_a1
A. R. Nurbekyan. Bohr’s theorem for double trigonometric interpolation polynomials. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 13-23. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a1/

[1] N.K. Bari, A Treatise on Trigonometric Series, Pergamon Press, 1964

[2] J.-P. Kahane, Y. Katznelson, Series de Fourier des Fonctions Bornees, Studies in Pure Mathematics, 1983, 395–410 | MR | Zbl

[3] A.A. Sahakian, “On Bohr’s Theorem for Multiple Fourier Series”, Mat. Zametki, 64:6 (1998), 913–924 | DOI | MR

[4] B.I. Golubov, “Double Fourier Series and Functions of Bounded Variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 12, 55–68 (in Russian) | MR | Zbl

[5] A. Zygmund, Trigonometric Series, ed. 2nd, Cambridge Univ. Press, New York, 1959 | MR | Zbl

[6] D. Waterman, H. Xing, “The Convergence of Partial Sums of Interpolating Polynomials”, J. Math. Anal. Appl., 333 (2007), 543–555 | DOI | MR | Zbl