On the divergence of Walsh and Haar series by sectorial and triangular regions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost everywhere (a.e.) divergence problems of the triangular and sectorial partial sums of the double Fourier series in Walsh and Haar orthonormal systems are studied. In particular, is constructed an example of bounded function on the unit square, which double Walsh–Fourier series diverges a.e. by an increasing sequence of triangular regions.
Keywords: Haar series, Walsh series, divergence of triangular sums, divergence of sectorial sums.
@article{UZERU_2014_2_a0,
     author = {G. A. Karagulyan and K. R. Muradyan},
     title = {On the divergence of {Walsh} and {Haar} series by sectorial and triangular regions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--12},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/}
}
TY  - JOUR
AU  - G. A. Karagulyan
AU  - K. R. Muradyan
TI  - On the divergence of Walsh and Haar series by sectorial and triangular regions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 3
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/
LA  - en
ID  - UZERU_2014_2_a0
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%A K. R. Muradyan
%T On the divergence of Walsh and Haar series by sectorial and triangular regions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 3-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/
%G en
%F UZERU_2014_2_a0
G. A. Karagulyan; K. R. Muradyan. On the divergence of Walsh and Haar series by sectorial and triangular regions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/