Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2014_2_a0, author = {G. A. Karagulyan and K. R. Muradyan}, title = {On the divergence of {Walsh} and {Haar} series by sectorial and triangular regions}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {3--12}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/} }
TY - JOUR AU - G. A. Karagulyan AU - K. R. Muradyan TI - On the divergence of Walsh and Haar series by sectorial and triangular regions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2014 SP - 3 EP - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/ LA - en ID - UZERU_2014_2_a0 ER -
%0 Journal Article %A G. A. Karagulyan %A K. R. Muradyan %T On the divergence of Walsh and Haar series by sectorial and triangular regions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2014 %P 3-12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/ %G en %F UZERU_2014_2_a0
G. A. Karagulyan; K. R. Muradyan. On the divergence of Walsh and Haar series by sectorial and triangular regions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/
[1] L. Carleson, “On the Convergence and Growth of Partial Sums of Fourier Series”, Acta Math., 116 (1966), 135–137 | DOI | MR
[2] N.Yu. Antonov, “Convergence of Fourier Series”, East Journal on Approximation, 2:2 (1996), 187–196 | MR | Zbl
[3] N.Yu. Antonov, “Condition for the Finitness of Majorants for Sequences of Operators and Convergence of Fourier Series”, Proc. of the Steklov Inst. of Mathematics, 2001, no. 1, 1–19 | MR
[4] P. Billard, “Sur la Convergence Presque Partout des Series de Fourier Walsh dès Functions de l’Espace $L^2(0; 1)$”, Studia Math., 28 (1967), 363–388 | MR | Zbl
[5] P. Sjölin, “An Inequality of Paley and Convergence A. E. of Walsh–Fourier Series”, Arkiv för Mat., 7 (1969), 551–570 | DOI | MR | Zbl
[6] P. Sjölin, F. Soria, “Remark on a Theorem of N. Yu. Antonov”, Studia Mathematica, 158:1 (2003), 79–96 | DOI | MR
[7] P. Sjölin, “Convergence Almost Everywhere Certain Singular Integrals and Multiple Fourier Series”, Arkiv för Mat., 9 (1971), 65–90 | DOI | MR | Zbl
[8] Ch. Fefferman, “On the Convergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:5 (1971), 744–745 | DOI | MR | Zbl
[9] N.R. Tevzadze, “On the Convergence of Double Fourier Series of a Square Integrable Function”, Sobsh. AN Gruzii, 58:2 (1970), 277–279 (in Russian) | MR | Zbl
[10] Ch. Fefferman, “On the Divergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl
[11] R.D. Getsadze, “Continuous Function with Multiple Fourier Series in the Walsh–Peley System that Diverges Almost Everywhere”, Math. USSR Sbornik, 56:1 (1987), 262–278 | DOI | MR | Zbl
[12] G. Gát, U. Goginava, “Triangular Fejér Summability of Two-Dimensional Walsh–Fourier Series”, Anal. Math., 40:2 (2014), 83–104, arXiv: 1309.7548v1 [math.AP] | DOI | MR | Zbl
[13] U. Goginava, F. Weisz, “Maximal Operator of the Fejér Means of Triangular Partial Sums of Two-Dimensional Walsh–Fourier Series”, Georgian Math. J., 19:1 (2012), 101–115 | DOI | MR | Zbl
[14] F. Schipp, W.R. Wade, P. Simon, J. Pál, Walsh Series, an Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol–New York, 1990 | MR | Zbl
[15] F. Weisz, “Triangular Ces̀ro Summability of Two-Dimensional Fourier Series”, Acta Math. Hungar., 132:1–2 (2011), 27–41 | DOI | MR | Zbl
[16] E.M. Nikishin, P.L. Ul’yanov, “On Absolute and Unconditional Convergence”, Uspechi Matem. Nauk, 22:3 (1967), 240–242 (in Russian) | MR
[17] B.S. Kashin, A.A. Saakyan, Orthogonal Series, AMS, Providence, R.I., 1984 | MR
[18] P.L. Ul’yanov, “Divergence Fourier Series of the Class $L_p(p\geq 2)$”, Dokl. AN USSR, 137:4 (1961), 768–789 (in Russian)
[19] A.M. Olevskii, “Divergence Fourier Series”, Izv. AN USSR. Ser. Matem., 27:3 (1963), 343–366 (in Russian) | MR
[20] A.M. Olevskii, “Divergence Fourier Series of Continuous Functios”, Dokl. AN USSR, 141:1 (1961), 28–31 (in Russian) | MR
[21] K.R. Muradyan, “On Absolute Divergence of Fourier–Haar Series of Characteristic Functions”, Journal of Contemporary Mathematical Analysis, 46 (2011), 299–304 | DOI | MR | Zbl
[22] G.A. Karagulyan, “On Unboundedness of Maximal Operators for Directional Hilbert Transforms”, Proc. Amer. Math. Soc., 135:10 (2007), 3133–3141 | DOI | MR | Zbl
[23] G.A. Karagulyan, “On the Selection of Convergence Subsequences with Lacunary Density from an Arbitrary Orthonormal System”, Dokl. AN Armenii, 84:1 (1987), 17–20 (in Russian) | MR | Zbl
[24] G.I. Golubov, A.V. Efimov, V.A. Skvortsov, Walsh Series and Transformations. Theory and Applications, Springer, 1991 | MR