On the divergence of Walsh and Haar series by sectorial and triangular regions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost everywhere (a.e.) divergence problems of the triangular and sectorial partial sums of the double Fourier series in Walsh and Haar orthonormal systems are studied. In particular, is constructed an example of bounded function on the unit square, which double Walsh–Fourier series diverges a.e. by an increasing sequence of triangular regions.
Keywords: Haar series, Walsh series, divergence of triangular sums, divergence of sectorial sums.
@article{UZERU_2014_2_a0,
     author = {G. A. Karagulyan and K. R. Muradyan},
     title = {On the divergence of {Walsh} and {Haar} series by sectorial and triangular regions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--12},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/}
}
TY  - JOUR
AU  - G. A. Karagulyan
AU  - K. R. Muradyan
TI  - On the divergence of Walsh and Haar series by sectorial and triangular regions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 3
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/
LA  - en
ID  - UZERU_2014_2_a0
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%A K. R. Muradyan
%T On the divergence of Walsh and Haar series by sectorial and triangular regions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 3-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/
%G en
%F UZERU_2014_2_a0
G. A. Karagulyan; K. R. Muradyan. On the divergence of Walsh and Haar series by sectorial and triangular regions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a0/

[1] L. Carleson, “On the Convergence and Growth of Partial Sums of Fourier Series”, Acta Math., 116 (1966), 135–137 | DOI | MR

[2] N.Yu. Antonov, “Convergence of Fourier Series”, East Journal on Approximation, 2:2 (1996), 187–196 | MR | Zbl

[3] N.Yu. Antonov, “Condition for the Finitness of Majorants for Sequences of Operators and Convergence of Fourier Series”, Proc. of the Steklov Inst. of Mathematics, 2001, no. 1, 1–19 | MR

[4] P. Billard, “Sur la Convergence Presque Partout des Series de Fourier Walsh dès Functions de l’Espace $L^2(0; 1)$”, Studia Math., 28 (1967), 363–388 | MR | Zbl

[5] P. Sjölin, “An Inequality of Paley and Convergence A. E. of Walsh–Fourier Series”, Arkiv för Mat., 7 (1969), 551–570 | DOI | MR | Zbl

[6] P. Sjölin, F. Soria, “Remark on a Theorem of N. Yu. Antonov”, Studia Mathematica, 158:1 (2003), 79–96 | DOI | MR

[7] P. Sjölin, “Convergence Almost Everywhere Certain Singular Integrals and Multiple Fourier Series”, Arkiv för Mat., 9 (1971), 65–90 | DOI | MR | Zbl

[8] Ch. Fefferman, “On the Convergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:5 (1971), 744–745 | DOI | MR | Zbl

[9] N.R. Tevzadze, “On the Convergence of Double Fourier Series of a Square Integrable Function”, Sobsh. AN Gruzii, 58:2 (1970), 277–279 (in Russian) | MR | Zbl

[10] Ch. Fefferman, “On the Divergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[11] R.D. Getsadze, “Continuous Function with Multiple Fourier Series in the Walsh–Peley System that Diverges Almost Everywhere”, Math. USSR Sbornik, 56:1 (1987), 262–278 | DOI | MR | Zbl

[12] G. Gát, U. Goginava, “Triangular Fejér Summability of Two-Dimensional Walsh–Fourier Series”, Anal. Math., 40:2 (2014), 83–104, arXiv: 1309.7548v1 [math.AP] | DOI | MR | Zbl

[13] U. Goginava, F. Weisz, “Maximal Operator of the Fejér Means of Triangular Partial Sums of Two-Dimensional Walsh–Fourier Series”, Georgian Math. J., 19:1 (2012), 101–115 | DOI | MR | Zbl

[14] F. Schipp, W.R. Wade, P. Simon, J. Pál, Walsh Series, an Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol–New York, 1990 | MR | Zbl

[15] F. Weisz, “Triangular Ces̀ro Summability of Two-Dimensional Fourier Series”, Acta Math. Hungar., 132:1–2 (2011), 27–41 | DOI | MR | Zbl

[16] E.M. Nikishin, P.L. Ul’yanov, “On Absolute and Unconditional Convergence”, Uspechi Matem. Nauk, 22:3 (1967), 240–242 (in Russian) | MR

[17] B.S. Kashin, A.A. Saakyan, Orthogonal Series, AMS, Providence, R.I., 1984 | MR

[18] P.L. Ul’yanov, “Divergence Fourier Series of the Class $L_p(p\geq 2)$”, Dokl. AN USSR, 137:4 (1961), 768–789 (in Russian)

[19] A.M. Olevskii, “Divergence Fourier Series”, Izv. AN USSR. Ser. Matem., 27:3 (1963), 343–366 (in Russian) | MR

[20] A.M. Olevskii, “Divergence Fourier Series of Continuous Functios”, Dokl. AN USSR, 141:1 (1961), 28–31 (in Russian) | MR

[21] K.R. Muradyan, “On Absolute Divergence of Fourier–Haar Series of Characteristic Functions”, Journal of Contemporary Mathematical Analysis, 46 (2011), 299–304 | DOI | MR | Zbl

[22] G.A. Karagulyan, “On Unboundedness of Maximal Operators for Directional Hilbert Transforms”, Proc. Amer. Math. Soc., 135:10 (2007), 3133–3141 | DOI | MR | Zbl

[23] G.A. Karagulyan, “On the Selection of Convergence Subsequences with Lacunary Density from an Arbitrary Orthonormal System”, Dokl. AN Armenii, 84:1 (1987), 17–20 (in Russian) | MR | Zbl

[24] G.I. Golubov, A.V. Efimov, V.A. Skvortsov, Walsh Series and Transformations. Theory and Applications, Springer, 1991 | MR