Deformation of the real part of $\beta$-uniform algebra
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 19-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the deformation of the real part of $\beta$-uniform algebra on a locally compact Hausdorff space. We prove that if the deformation semigroup contains at least one deformation other than the affinity, then $\beta$-uniform algebra coincides with the algebra of all complex-valued bounded continuous functions.
Keywords: $\beta$-uniform algebra, topology.
Mots-clés : Hausdorff space
@article{UZERU_2014_1_a3,
     author = {T. M. Khudoyan},
     title = {Deformation of the real part of $\beta$-uniform algebra},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {19--21},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a3/}
}
TY  - JOUR
AU  - T. M. Khudoyan
TI  - Deformation of the real part of $\beta$-uniform algebra
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 19
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a3/
LA  - en
ID  - UZERU_2014_1_a3
ER  - 
%0 Journal Article
%A T. M. Khudoyan
%T Deformation of the real part of $\beta$-uniform algebra
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 19-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a3/
%G en
%F UZERU_2014_1_a3
T. M. Khudoyan. Deformation of the real part of $\beta$-uniform algebra. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 19-21. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a3/

[1] R.C. Buck, “Bounded Continuous Functions on a Locally Compact Space”, Michigan Math. J., 5 (1958), 95–104 | DOI | MR | Zbl

[2] M.I. Karakhanyan, T.A. Khor’kova, “A Characterization of the Algebra $C_{\beta} (\Omega)$”, Functional Anal. and its Applic., 13:1 (2009), 69–71 | DOI | MR

[3] S.A. Grigoryan, M.I. Karakhanyan, T.A. Khor’kova, “On $\beta $-uniform Dirichlet Algebras”, Journal of Contemporary Mathematical Analysis, 45:6 (2010), 17–26 (in Russian) | MR

[4] I.M. Gelfand, D.A. Raikov, G.E. Shilov, Commutative Normed Rings, Gosud. Izd. Fiz.- Mat. Lit., M., 1960 (in Russian) | MR | Zbl

[5] M.A. Naimark, Normed Rings, Nauka, M., 1968 (in Russian) | MR

[6] W. Rudin, Functional Analysis, New York-Sydney-Toronto, 1973 | MR

[7] M.I. Karakhanyan, “On $\beta$-uniform Algebras $H^{\infty}_\beta(\Delta)$”, Second International Conference of Mathematics in Armenia, 2013, 41–42

[8] T.M. Khudoyan, “Algebra of Hyper-Analytic Functions as a $\beta$-uniform Algebra”, Proceedings of the YSU, Physical $\$ Mathematical Sciences, 2013, no. 3, 26–31 | Zbl

[9] O. Hatori, “Functions which Operate on the Real Part of a Function Algebra”, Proc. of the Amer. Math. Soc., 83:3 (1981), 565–568 | DOI | MR | Zbl

[10] K. Jarosz, Z. Sawon, “A Discontinuous Function does not Operate on the Real Part of a Function Algebras”, Casopis pro p̆estov ăni matematiky, 110 (1985), 58–59 | MR | Zbl

[11] J. Wermer, “The Space of Real Parts of a Function Algebra”, Pacif. J. Math., 13:4 (1963), 1423–1426 | DOI | MR | Zbl

[12] A. Bernard, “Espace des Parties Reelles des Él éments d’une Algébre de Banach dè Functions.”, J. Funct. Anal., 10 (1972), 387–409 | DOI | MR | Zbl