On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 64-65
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper it is shown that for every number $k\not\equiv1$ (mod 60) the equation $\frac5k=\frac1x+\frac1y+\frac1z$ has at least one solution $(x, y, z)\in N$.
Keywords:
Serpinsky’s hypothesis.
@article{UZERU_2013_3_a9,
author = {E. Kh. Aslanyan},
title = {On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {64--65},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/}
}
TY - JOUR
AU - E. Kh. Aslanyan
TI - On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$
JO - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY - 2013
SP - 64
EP - 65
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/
LA - en
ID - UZERU_2013_3_a9
ER -
%0 Journal Article
%A E. Kh. Aslanyan
%T On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 64-65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/
%G en
%F UZERU_2013_3_a9
E. Kh. Aslanyan. On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 64-65. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/