Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2013_3_a9, author = {E. Kh. Aslanyan}, title = {On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {64--65}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/} }
TY - JOUR AU - E. Kh. Aslanyan TI - On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2013 SP - 64 EP - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/ LA - en ID - UZERU_2013_3_a9 ER -
%0 Journal Article %A E. Kh. Aslanyan %T On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2013 %P 64-65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/ %G en %F UZERU_2013_3_a9
E. Kh. Aslanyan. On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 64-65. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/
[1] W. Sierpinski, “Sur les Dècompoitions de Nombers Rotionnels en Fractions Primaires”, Mathesis, 65 (1956), 16–32 | MR | Zbl
[2] G. Palamá, “Sudi $\$ Congettura di Sierpínski Relative alla Possibilitáin Numeri Natuurali della $5/k = 1/x+1/y+1/z$”, Boll. Un. Mat. Ital., 3 (1958), 65–72 | MR
[3] R.C. Vaughan, “On a Problem of Erdös, Straus and Schinzel”, Mathematika, 17 (1970), 193–198 | DOI | MR | Zbl
[4] C. Viola, “On the Diophantine Equations $\prod\limits_0^kx_i-\sum\limits_0^kx_i=n$ and $\sum\limits_0^k\frac{1}{x_i}=\frac{a}{n}$”, Acta Arith., 22 (1972), 339–352 | MR
[5] Z. Shen, “On the Diophantine Equations $\sum\limits_0^k\frac{1}{x_i}=\frac{a}{n}$”, Chinese Ann. Math. Ser. B, 7:2 (1986), 213–220 | MR | Zbl
[6] C. Elsholtz, “Sums of $k$ Unit Fractions”, Trans. Amer. Mat. Soc., 2001, 3209–3227 | DOI | MR | Zbl