On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in N\}$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 64-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper it is shown that for every number $k\not\equiv1$ (mod 60) the equation $\frac5k=\frac1x+\frac1y+\frac1z$ has at least one solution $(x, y, z)\in N$.
Keywords: Serpinsky’s hypothesis.
@article{UZERU_2013_3_a9,
     author = {E. Kh. Aslanyan},
     title = {On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in  N\}$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {64--65},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/}
}
TY  - JOUR
AU  - E. Kh. Aslanyan
TI  - On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in  N\}$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 64
EP  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/
LA  - en
ID  - UZERU_2013_3_a9
ER  - 
%0 Journal Article
%A E. Kh. Aslanyan
%T On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in  N\}$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 64-65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/
%G en
%F UZERU_2013_3_a9
E. Kh. Aslanyan. On the solution of the equation $\frac5k=\frac1x+\frac1y+\frac1z$ on the set of natural numbers $N\setminus \{60 n + 1, n\in  N\}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 64-65. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a9/

[1] W. Sierpinski, “Sur les Dècompoitions de Nombers Rotionnels en Fractions Primaires”, Mathesis, 65 (1956), 16–32 | MR | Zbl

[2] G. Palamá, “Sudi $\$ Congettura di Sierpínski Relative alla Possibilitáin Numeri Natuurali della $5/k = 1/x+1/y+1/z$”, Boll. Un. Mat. Ital., 3 (1958), 65–72 | MR

[3] R.C. Vaughan, “On a Problem of Erdös, Straus and Schinzel”, Mathematika, 17 (1970), 193–198 | DOI | MR | Zbl

[4] C. Viola, “On the Diophantine Equations $\prod\limits_0^kx_i-\sum\limits_0^kx_i=n$ and $\sum\limits_0^k\frac{1}{x_i}=\frac{a}{n}$”, Acta Arith., 22 (1972), 339–352 | MR

[5] Z. Shen, “On the Diophantine Equations $\sum\limits_0^k\frac{1}{x_i}=\frac{a}{n}$”, Chinese Ann. Math. Ser. B, 7:2 (1986), 213–220 | MR | Zbl

[6] C. Elsholtz, “Sums of $k$ Unit Fractions”, Trans. Amer. Mat. Soc., 2001, 3209–3227 | DOI | MR | Zbl