Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2013_3_a8, author = {D. Yu. Lando and A. S. Fridman and I. E. Grigoryan and E. N. Galyuk}, title = {Determination of melting temperature for multi-peak differential melting curves of {DNA}}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {57--63}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a8/} }
TY - JOUR AU - D. Yu. Lando AU - A. S. Fridman AU - I. E. Grigoryan AU - E. N. Galyuk TI - Determination of melting temperature for multi-peak differential melting curves of DNA JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2013 SP - 57 EP - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a8/ LA - en ID - UZERU_2013_3_a8 ER -
%0 Journal Article %A D. Yu. Lando %A A. S. Fridman %A I. E. Grigoryan %A E. N. Galyuk %T Determination of melting temperature for multi-peak differential melting curves of DNA %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2013 %P 57-63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a8/ %G en %F UZERU_2013_3_a8
D. Yu. Lando; A. S. Fridman; I. E. Grigoryan; E. N. Galyuk. Determination of melting temperature for multi-peak differential melting curves of DNA. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 57-63. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a8/
[1] A. Kagemoto, Y. Takagi, K. Naruse, Y. Baba, “Thermodynamic Characterization of Binding of DNA with Cisplatin in Aqueous Solution by Calorimetry”, Thermochm. Acta, 190:2 (1991), 191–201 | DOI
[2] K. Nunomura, Y. Maeda, E. Ohtsubo, “The Interaction of Platinum Complexes with DNA Studied by Differential Scanning Calorimetry”, J. Gen. Appl. Microbiol., 37:2 (1991), 207–214 | DOI
[3] D.Y. Lando, A.S. Fridman, V.I. Krot, A.A. Akhrem, “Melting of Cross-Linked DNA: III. Calculation of Differential Melting Curves”, J. Biomol. Struct. Dynam., 16:1 (1998), 59–67 | DOI
[4] D.Y. Lando, E.N. Galyuk, Chun-Ling Chang, Chin-Kun Hu, “Temporal Behavior of DNA Thermal Stability in the Presence of Platinum Compounds. Role of Monofunctional and Bifunctional Adducts”, Journal of Inorganic Biochemistry, 117:1 (2012), 164–170 | DOI | MR
[5] D. Poland, “Recursion Relation Generation of Probability Profiles for Specific-Sequence Macromolecules with Long-Range Correlation”, Biopolymers, 13:9 (1974), 1859–1871 | DOI
[6] M. Fixman, J.J. Freire, “Theory of DNA Melting Curves”, Biopolymers, 16:12 (1977), 2693–2704 | DOI
[7] R.M. Wartell, A.S. Benight, “Thermal Denaturation of DNA Molecules: a Comparison of Theory with Experiment”, Physics Reports, 126:2 (1985), 67–107 | DOI
[8] R.D. Blake, J.W. Bizzaro, J.D. Blake, G.R. Day, S.G. Delcourt, J. Knowles, K.A. Marx, J. Santalucia, “Statistical Mechanical Simulation of Polymeric DNA Melting with MELTSIM”, Jr. Bioinformatics, 15:5 (1999), 370–375 | DOI
[9] F. Manyanga, M.T. Horne, G.P. Brewood, D.J. Fish, R. Dickman, A.S. Benight, “Origins of the “Nucleation” Free Energy in the Hybridization Thermodynamics of Short Duplex DNA”, J. Phys. Chem. B, 113:9 (2009), 2556–2563 | DOI
[10] D.Y. Lando, V.P. Egorova, V.I. Krot, A.A. Akhrem, “Determination of Protein Contaminants in DNA Preparations of High Purity”, Molec. Biol., 30:3 (1996), 701–706
[11] J. Volker, R.D. Blake, S.G. Delcourt, K.J. Breslauer, “High-Resolution Calorimetric and Optical Melting Profiles of DNA Plasmids: Resolving Contributions from Intrinsic Melting Domains and Specifically Designed Inserts”, Biopolymers, 50:3 (1999), 303–318 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[12] L.A. Marky, K.J. Breslauer, “Calculating Thermodynamic Data for Transitions of any Molecularity from Equilibrium Melting Curves”, Biopolymers, 26:9 (1987), 1601–1620 | DOI
[13] K.J. Breslauer, “Extracting Thermodynamic Data from Equilibrium Melting Curves for Oligonucleotide Order-Disorder Transitions”, Methods in Enzymology, 259 (1995), 221–242 | DOI
[14] R.D. Blake, S.G. Delcourt, “Thermal Stability of DNA”, Nucleic Acids Research, 26:14 (1998), 3323–3332 | DOI
[15] H. Uedaira, S.-I. Kidokoro, S. Ohgiya, K. Ishizaki, N. Shinriki, “Thermal Transition of Plasmid pBR322 Closed Circular, Open Circular and Linear DNA”, Thermochimica Acta, 232:1 (1994), 7–18 | DOI
[16] R.D. Blake, S.G. Delcourt, “Thermodynamic Effects of Formamide on DNA Stability”, Nucleic Acids Res., 24:11 (1996), 2095–2103 | DOI
[17] P.O. Vardevanyan, Yu.S. Babayan, R.R. Vardapetyan, G.A. Panosyan, V.M. Aslanyan, A.T. Karapetian, “Simple Method of Definition of an Average DNA Nucleotide Composition from the Melting Curves”, Biophys., 28:1 (1983), 130–131
[18] D. Wang, S.J. Lippard, “Cellular Processing of Platinum Anticancer Drugs”, Nat. Rev. Drug Discov., 4:4 (2005), 307–320 | DOI
[19] S.S. Yu, H.J. Li, “Helix-Coil Transition and Conformational Studies of Protamine-DNA Complexes”, Biopolymers, 12:12 (1973), 2777–2788 | DOI
[20] H.J. Li, B. Brand, A. Rotter, C. Chang, M. Weiskopf, “Helix-Coil Transition in Nucleoprotein. Effect of Ionic Strength on Thermal Denaturation of Polylysine-DNA Complexes”, Biopolymers, 13:8 (1974), 1681–1697 | DOI