Duality in some spaces of functions harmonic in the unit ball
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 29-36
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the Banach spaces $h_{\infty}(\varphi), h_0(\varphi)$ and $h^1(\eta)$ of functions harmonic in the unit ball in $\mathbb{R}^ n $, depending on weight function $\varphi$ and weighting measure $\eta$. The paper studies the following question: for which $\varphi$ and $\eta$ we $h^1(\eta)^* \sim h_{\infty} (\eta)$ and $h_0(\varphi)^* \sim h^1 (\eta)$. We prove that the necessary and sufficient condition for this is that certain linear operator, which projects $L^{\infty}(d\eta\, d\sigma)$ onto the subspace $\varphi h_{\infty}(\varphi)$, is bounded.
Keywords:
Banach space, harmonic function, weight function, weighting measure, bounded projector.
@article{UZERU_2013_3_a4,
author = {A. I. Petrosyan and E. S. Mkrtchyan},
title = {Duality in some spaces of functions harmonic in the unit ball},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {29--36},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a4/}
}
TY - JOUR AU - A. I. Petrosyan AU - E. S. Mkrtchyan TI - Duality in some spaces of functions harmonic in the unit ball JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2013 SP - 29 EP - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a4/ LA - en ID - UZERU_2013_3_a4 ER -
%0 Journal Article %A A. I. Petrosyan %A E. S. Mkrtchyan %T Duality in some spaces of functions harmonic in the unit ball %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2013 %P 29-36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a4/ %G en %F UZERU_2013_3_a4
A. I. Petrosyan; E. S. Mkrtchyan. Duality in some spaces of functions harmonic in the unit ball. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 29-36. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a4/