On a property of general Haar system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 23-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove that for some type of general Haar systems (particularly for classical Haar system) and for any $\varepsilon>0$ there exists a set $E\subset(0,1)^2 , | E |>1-\varepsilon$, such that for every $f\in L^1(0,1)^2$ one can find a function $g\in L^1(0,1)^2$, which coincides with $f$ on $E$ and Fourier – Haar coefficients $\{c_{(i,k)}(g)\}_{i,k=1}^{\infty}$ are monotonic over all rays.
Keywords: general Haar system
Mots-clés : convergence, Fourier–Haar coefficients.
@article{UZERU_2013_3_a3,
     author = {A. Kh. Kobelyan},
     title = {On a property of general {Haar} system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {23--28},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/}
}
TY  - JOUR
AU  - A. Kh. Kobelyan
TI  - On a property of general Haar system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 23
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/
LA  - en
ID  - UZERU_2013_3_a3
ER  - 
%0 Journal Article
%A A. Kh. Kobelyan
%T On a property of general Haar system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 23-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/
%G en
%F UZERU_2013_3_a3
A. Kh. Kobelyan. On a property of general Haar system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 23-28. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/

[1] A. Kamont, “General Haar System and Greedy Approximation”, Studia Math., 145:2 (2001), 165–184 | DOI | MR | Zbl

[2] S.L. Gogyan, “On Greedy Algorithm in $L^1(0,1)$ by Regular Haar System”, Izv. NAN RA., Matem., 46:1 (2011), 3–16 (in Russian) | MR | Zbl

[3] M.G. Grigoryan, S.L. Gogyan, “Non Linear Approximation by Haar System and Modification of Functions”, Analysis Mathem., 32 (2006), 49–80 | DOI | MR | Zbl

[4] T. Tao, “On the Almost Everywhere Convergence of Wavelet Summation Methods”, Applied and Computational Harmonic Analysis, 3:4 (1996), 384–387 | DOI | MR | Zbl

[5] G.G. Gevorgyan, A.A. Stepanyan, “On the Almost Everywhere Divergence of a Summation Method for Wavelet Expansions”, Izv. NAN RA., Matem., 39:2 (2004), 27–32 (in Russian) | MR

[6] S.J. Dilworth, D. Kutzarova, P. Wojtaszczyk, “On Approximate $l_1$ Systems in Banach Spaces”, Journal of Approximation Theory, 114 (2002), 214–241 | DOI | MR | Zbl

[7] V.N. Temlyakov, “The Best $m$-Term Approximation and Greedy Algorithms”, Advances in Comp., Mathem., 8:3 (1998), 249–265 | DOI | MR | Zbl

[8] A.Kh. Kobelyan, “Convergence of Greedy Algorithm in $L^1$ with Respect to General Haar System”, Izv. NAN RA., Matem., 47:6 (2012), 53–70 (in Russian) | MR | Zbl