On a property of general Haar system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 23-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we prove that for some type of general Haar systems (particularly for classical Haar system) and for any $\varepsilon>0$ there exists a set $E\subset(0,1)^2 , | E |>1-\varepsilon$, such that for every $f\in L^1(0,1)^2$ one can find a function $g\in L^1(0,1)^2$, which coincides with $f$ on $E$ and Fourier – Haar coefficients $\{c_{(i,k)}(g)\}_{i,k=1}^{\infty}$ are monotonic over all rays.
Keywords:
general Haar system
Mots-clés : convergence, Fourier–Haar coefficients.
Mots-clés : convergence, Fourier–Haar coefficients.
@article{UZERU_2013_3_a3,
author = {A. Kh. Kobelyan},
title = {On a property of general {Haar} system},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {23--28},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/}
}
A. Kh. Kobelyan. On a property of general Haar system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 23-28. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/