Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2013_3_a3, author = {A. Kh. Kobelyan}, title = {On a property of general {Haar} system}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {23--28}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/} }
A. Kh. Kobelyan. On a property of general Haar system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 23-28. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a3/
[1] A. Kamont, “General Haar System and Greedy Approximation”, Studia Math., 145:2 (2001), 165–184 | DOI | MR | Zbl
[2] S.L. Gogyan, “On Greedy Algorithm in $L^1(0,1)$ by Regular Haar System”, Izv. NAN RA., Matem., 46:1 (2011), 3–16 (in Russian) | MR | Zbl
[3] M.G. Grigoryan, S.L. Gogyan, “Non Linear Approximation by Haar System and Modification of Functions”, Analysis Mathem., 32 (2006), 49–80 | DOI | MR | Zbl
[4] T. Tao, “On the Almost Everywhere Convergence of Wavelet Summation Methods”, Applied and Computational Harmonic Analysis, 3:4 (1996), 384–387 | DOI | MR | Zbl
[5] G.G. Gevorgyan, A.A. Stepanyan, “On the Almost Everywhere Divergence of a Summation Method for Wavelet Expansions”, Izv. NAN RA., Matem., 39:2 (2004), 27–32 (in Russian) | MR
[6] S.J. Dilworth, D. Kutzarova, P. Wojtaszczyk, “On Approximate $l_1$ Systems in Banach Spaces”, Journal of Approximation Theory, 114 (2002), 214–241 | DOI | MR | Zbl
[7] V.N. Temlyakov, “The Best $m$-Term Approximation and Greedy Algorithms”, Advances in Comp., Mathem., 8:3 (1998), 249–265 | DOI | MR | Zbl
[8] A.Kh. Kobelyan, “Convergence of Greedy Algorithm in $L^1$ with Respect to General Haar System”, Izv. NAN RA., Matem., 47:6 (2012), 53–70 (in Russian) | MR | Zbl