Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2013_2_a5, author = {Masoud Rezaei}, title = {Problem of optimal stabilization under integrally small perturbations}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {34--41}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2013_2_a5/} }
TY - JOUR AU - Masoud Rezaei TI - Problem of optimal stabilization under integrally small perturbations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2013 SP - 34 EP - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2013_2_a5/ LA - en ID - UZERU_2013_2_a5 ER -
%0 Journal Article %A Masoud Rezaei %T Problem of optimal stabilization under integrally small perturbations %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2013 %P 34-41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2013_2_a5/ %G en %F UZERU_2013_2_a5
Masoud Rezaei. Problem of optimal stabilization under integrally small perturbations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 34-41. http://geodesic.mathdoc.fr/item/UZERU_2013_2_a5/
[1] S.G. Shahinyan, “Stabilization Problems of Not Fully Controllable Systems under Integrally Small Perturbations”, Problems of the Nonlinear Analysis in the Engineering Systems, 14:2 (30) (2008), 53–69
[2] D.R. Merkin, Introduction to the Theory of Stability, Nauka, M., 1972, 300 pp. (in Russian)
[3] S.G. Shahinyan, “Stability Theory Problem”, Uchenie Zapiski EGU, 1986, no. 2, 39–46 (in Russian)
[4] E.G. Al'brecht, G.S. Shelementiev, Lectures on Stabilization Theory, Sverdlovsk, 1972, 274 pp. (in Russian)
[5] N.N. Krasovsky, “Stabilization Problems of Controlled Motions”, Theory Motion Stability, ed. I.G. Malkin, Nauka, M., 1966, 475–517 (in Russian)
[6] N.N. Krasovsky, Control Theory of Motion, Nauka, M., 1968, 475 pp. (in Russian)