The automorphism tower problem for free periodic groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the group of automorphisms $Aut(B(m;n))$ of the free Burnside group $B(m;n)$ is complete for every odd exponent $n\geq 1003$ and for any $m > 1$, that is it has a trivial center and any automorphism of $Aut(B(m;n))$ is inner. Thus, the automorphism tower problem for groups $B(m;n)$ is solved and it is showed that it is as short as the automorphism tower of the absolutely free groups. Moreover, we obtain that the group of all inner automorphisms $Inn(B(m;n))$ is the unique normal subgroup in $Aut(B(m;n))$ among all its subgroups, which are isomorphic to free Burnside group $B(s;n)$ of some rank $s$.
Keywords: automorphism tower, complete group, free Burnside group.
@article{UZERU_2013_2_a0,
     author = {V. S. Atabekyan},
     title = {The automorphism tower problem for free periodic groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - The automorphism tower problem for free periodic groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 3
EP  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/
LA  - en
ID  - UZERU_2013_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T The automorphism tower problem for free periodic groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 3-7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/
%G en
%F UZERU_2013_2_a0
V. S. Atabekyan. The automorphism tower problem for free periodic groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/

[1] D.J.S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Second edition, Springer-Verlag, N.Y., 1996 | DOI | MR

[2] J.L. Dyer, E. Formanek, “The Automorphism Group of a Free Group is Complete”, J. London Math. Soc., 11:2 (1975), 181–190 | DOI | MR | Zbl

[3] V. Tolstykh, “The Automorphism Tower of a Free Group”, J. London Math. Soc., 61:2 (2000), 423–440 | DOI | MR | Zbl

[4] E. Formanek, “Characterizing a Free Group in its Automorphism Group”, J. Algebra, 133:2 (1990), 424–432 | DOI | MR | Zbl

[5] D.G. Khramtsov, “Completeness of Groups of Outer Automorphisms of Free Groups”, Group-Theoretic Investigations, Ural. Otdel. Akad. Nauk SSSR, Sverdlovsk, 1990, 128–143 (in Russian) | MR | Zbl

[6] M.R. Bridson, K. Vogtmann, “Automorphisms of Automorphism Groups of Free Groups”, J. Algebra, 229 (2000), 785–792 | DOI | MR | Zbl

[7] J. Dyer, E. Formanek, “Characteristic Subgroups and Complete Automorphism Groups”, Amer. J. Math., 99:4 (1977), 713–753 | DOI | MR | Zbl

[8] J. Dyer, E. Formanek, “Automorphism Sequences of Free Nilpotent Groups of Class Two”, Math. Proc. Cambridge Philos. Soc., 79:2 (1976), 271–279 | DOI | MR | Zbl

[9] S.I. Adian, The Burnside Problem and Identities in Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 95, Springer-Verlag, Berlin-New York, 1979, 336 pp. | MR

[10] Russian Math. Surveys, 65:5 (2010), 805–855 | DOI | MR | Zbl

[11] Math. USSR-Izv., 39:2 (1992), 905–957 | MR

[12] A.Yu. Ol’shanskii, “Self-Normalization of Free Subgroups in the Free Burnside Groups”, Groups, Rings, Lie and Hopf Algebras, Math. Its Application, 555, Kluwer Academic, Dordrecht, 2003, 179–187 | MR | Zbl

[13] E.A. Cherepanov, “Normal Automorphisms of Free Burnside Groups of Large Odd Exponents”, Int. J. Algebra Comput., 16:5 (2006), 839–847 | DOI | MR | Zbl

[14] Proc. Steklov Inst. Math., 274 (2011), 9–24 | MR | Zbl

[15] J. Math. Sci., 166:6 (2010), 691–703, N.Y. | MR | MR | Zbl

[16] Izv. Math., 75:2 (2011), 223–237 | DOI | DOI | MR | Zbl

[17] Sbornik: Mathematics, 204:2 (2013), 182–189 (in Russian) | DOI | DOI | MR | Zbl

[18] V.D. Mazurov, Yu.I. Merzlyakov, V.A. Churkin (eds.), Including Problems from the 8th All-Union Symposium on Group Theory Held at Sumy, Eighth edition, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1982 (in Russian) | MR

[19] Izv. Math., 73:5 (2009), 861–892 | DOI | MR | Zbl