The automorphism tower problem for free periodic groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the group of automorphisms $Aut(B(m;n))$ of the free Burnside group $B(m;n)$ is complete for every odd exponent $n\geq 1003$ and for any $m > 1$, that is it has a trivial center and any automorphism of $Aut(B(m;n))$ is inner. Thus, the automorphism tower problem for groups $B(m;n)$ is solved and it is showed that it is as short as the automorphism tower of the absolutely free groups. Moreover, we obtain that the group of all inner automorphisms $Inn(B(m;n))$ is the unique normal subgroup in $Aut(B(m;n))$ among all its subgroups, which are isomorphic to free Burnside group $B(s;n)$ of some rank $s$.
Keywords: automorphism tower, complete group, free Burnside group.
@article{UZERU_2013_2_a0,
     author = {V. S. Atabekyan},
     title = {The automorphism tower problem for free periodic groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - The automorphism tower problem for free periodic groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 3
EP  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/
LA  - en
ID  - UZERU_2013_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T The automorphism tower problem for free periodic groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 3-7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/
%G en
%F UZERU_2013_2_a0
V. S. Atabekyan. The automorphism tower problem for free periodic groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2013_2_a0/