Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2013_1_a4, author = {V. K. Voskanyan and D. Gomes}, title = {Some estimates for stationary extended mean field games}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {24--31}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a4/} }
TY - JOUR AU - V. K. Voskanyan AU - D. Gomes TI - Some estimates for stationary extended mean field games JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2013 SP - 24 EP - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2013_1_a4/ LA - en ID - UZERU_2013_1_a4 ER -
%0 Journal Article %A V. K. Voskanyan %A D. Gomes %T Some estimates for stationary extended mean field games %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2013 %P 24-31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2013_1_a4/ %G en %F UZERU_2013_1_a4
V. K. Voskanyan; D. Gomes. Some estimates for stationary extended mean field games. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 24-31. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a4/
[1] M. Huang, P.E. Caines, R.P. Malhamè, “Large-Population Cost-Coupled LQG Problems with Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria”, Trans. Automat. Control, 52:9 (2007), 1560–1571 | DOI | MR
[2] M. Huang, R.P. Malhamè, P.E. Caines, “Large-Population Stochastic Dynamic Games: ClosedLoop McKean-Vlasov Systems and the Nash Certainty Equivalence Principle”, Commun. Inf. Syst., 6:3 (2006), 221–251 | MR
[3] J.- M. Lasry, P.- L. Lions, “Jeux à Champ Moyen. I. Le Cas Stationnaire”, C. R. Math. Acad. Sci., 343:9 (2006), 619–625 | DOI | MR | Zbl
[4] J.- M. Lasry, P.- L. Lions, “Jeux à Champ Moyen. II. Horizon Fini et Contrôle Optimal”, C. R. Math. Acad. Sci., 343:10 (2006), 679–684 | DOI | MR | Zbl
[5] J.- M. Lasry, P.- L. Lions, “Jeux Mean Field Games”, Jpn. J. Math., 2:1 (2007), 229–260 | DOI | MR | Zbl
[6] J.- M. Lasry, P.- L. Lions, Jeux Mean Field Games, Cahiers de la Chaire Finance et Développement Durable, 2007 | MR
[7] J.- M. Lasry, P.- L. Lions, O. Gueant, “Mean Field Games and Applications”, Paris-Princeton Lectures on Mathematical Finance, 2010 | MR
[8] J.- M. Lasry, P.- L. Lions, O. Gueant, Application of Mean Field Games to Growth Theory, Preprint, 2010
[9] A. Lachapelle, J. Salomon, G. Turinici, “Computation of Mean Field Equilibria in Economics”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 567–588 | DOI | MR | Zbl
[10] Y. Achdou, I.C. Dolcetta, Mean Field Games: Numerical Methods, Preprint, 2010 | MR
[11] F. Camilli, Y. Achdou, I.C. Dolcetta, Mean Field Games: Numerical Methods for the Planning Problem, Preprint, 2010
[12] D. Gomes, J. Mohr, R.R. Souza, “Discrete Time, Finite State Space Mean Field Games”, Journal de Mathematiques Pures et Appliquées, 93:2 (2010) | MR | Zbl
[13] D. Gomes, J. Mohr, R.R. Souza, Continuous Time Finite State Mean Field Games, Preprint, 2011
[14] D. Gomes, “A Stochastic Analogue of Aubry-Mather Theory”, Nonlinearity, 15:3 (2002), 581–603 | DOI | MR | Zbl
[15] O. Gueant, Mean Field Games and Applications to Economics, Ph.D. Thesis, Université Paris Dauphine, Paris, 2009
[16] P. Cardaliaguet, J.- M. Lasry, P.- L. Lions, A. Porretta, “Long Time Average of Mean Field Games”, Networks and Heterogeneous Media, 7:2 (2012), 279–301 | DOI | MR | Zbl
[17] D. Gomes, H. Sanchez-Morgado, On the Stochastic Evans-Aronsson Problem, Preprint, 2011
[18] D. Gomes, G. Pires, H. Sanchez-Morgado, A-Priori Estimates for Stationary Mean-Field Games, Preprint, 2012 | MR