On $\pi$-extensions of the semigroup $\mathbb{Z}_+$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 3-5

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper inverse $\pi$-extensions of the semigroup $\mathbb{Z}_+$ are studied. It is shown that $pi$-extension of the semigroup $\mathbb{Z}_+$ is inverse, if and only if its $\pi$-extension coincides with $\pi(\mathbb{Z}_+)$. The existence of a non-inverse $\pi$-extension for any abelian semigroup is proved.
Keywords: inverse semigroup, inverse representation, $\pi$-extension, Toeplitz algebra, $C^*$-algebra, inverse $\pi$-extension.
@article{UZERU_2013_1_a0,
     author = {T. A. Grigoryan and E. V. Lipacheva and V. H. Tepoyan},
     title = {On $\pi$-extensions of the semigroup $\mathbb{Z}_+$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--5},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a0/}
}
TY  - JOUR
AU  - T. A. Grigoryan
AU  - E. V. Lipacheva
AU  - V. H. Tepoyan
TI  - On $\pi$-extensions of the semigroup $\mathbb{Z}_+$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 3
EP  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_1_a0/
LA  - en
ID  - UZERU_2013_1_a0
ER  - 
%0 Journal Article
%A T. A. Grigoryan
%A E. V. Lipacheva
%A V. H. Tepoyan
%T On $\pi$-extensions of the semigroup $\mathbb{Z}_+$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 3-5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_1_a0/
%G en
%F UZERU_2013_1_a0
T. A. Grigoryan; E. V. Lipacheva; V. H. Tepoyan. On $\pi$-extensions of the semigroup $\mathbb{Z}_+$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 3-5. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a0/