A functional representation of free De Morgan algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 14-16

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that free Boolean algebra on $n$ free generators is isomorphic to the Boolean algebra of Boolean functions of $n$ variables. The free distributive lattice on $n$ free generators is isomorphic to the lattice of monotone Boolean functions of $n$ variables. In this paper we introduce the concept of De Morgan function and prove that the free De Morgan algebra on $n$ free generators is isomorphic to the De Morgan algebra of De Morgan functions of $n$ variables.
Keywords: monotone Boolean function, De Morgan function, free De Morgan algebra.
Mots-clés : antichain
@article{UZERU_2012_3_a2,
     author = {Yu. M. Movsisyan and V. A. Aslanyan},
     title = {A  functional representation of  free  {De} {Morgan}  algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--16},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/}
}
TY  - JOUR
AU  - Yu. M. Movsisyan
AU  - V. A. Aslanyan
TI  - A  functional representation of  free  De Morgan  algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 14
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/
LA  - en
ID  - UZERU_2012_3_a2
ER  - 
%0 Journal Article
%A Yu. M. Movsisyan
%A V. A. Aslanyan
%T A  functional representation of  free  De Morgan  algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 14-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/
%G en
%F UZERU_2012_3_a2
Yu. M. Movsisyan; V. A. Aslanyan. A  functional representation of  free  De Morgan  algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 14-16. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/