Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2012_3_a2, author = {Yu. M. Movsisyan and V. A. Aslanyan}, title = {A functional representation of free {De} {Morgan} algebras}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {14--16}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/} }
TY - JOUR AU - Yu. M. Movsisyan AU - V. A. Aslanyan TI - A functional representation of free De Morgan algebras JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2012 SP - 14 EP - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/ LA - en ID - UZERU_2012_3_a2 ER -
%0 Journal Article %A Yu. M. Movsisyan %A V. A. Aslanyan %T A functional representation of free De Morgan algebras %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2012 %P 14-16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/ %G en %F UZERU_2012_3_a2
Yu. M. Movsisyan; V. A. Aslanyan. A functional representation of free De Morgan algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 14-16. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/
[1] R. Balbes, P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MU, 1974 | MR | Zbl
[2] A. Bialynicki–Birula, H. Rasiowa, “On the Representation of Quasi-Boolean Algebras”, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., 5 (1957), 259–261 | MR | Zbl
[3] J.A. Brzozowski, “A Characterization of De Morgan Algebras”, Int. J. of Algebra and Comp., 11 (2001), 525–527 | DOI | MR | Zbl
[4] R. Dedekind, “Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler”, Festschrift der Techn. Hochsch. Braunschwig bei Gelegenheit der 69, Versammlung deutscher und Ärzte, 1897, 1–40
[5] Z. Ésik, “Free De Morgan Bisemigroups and Bisemilattices”, Algebra Coll., 10 (2003), 23–32 | DOI | MR | Zbl
[6] G.C. Moisil, “Recherches Sur l'Álgebre de la Logique”, Annales Scientifiques de l'Úniversite de Jassy, 22 (1935), 1–117
[7] Yu.M. Movsisyan, “Binary Representations of Algebras with at Most Two Binary Operations: a Cayley Theorem for Distributive Lattices”, Int. J. of Algebra and Comp., 19 (2009), 97–106 | DOI | MR | Zbl
[8] E. Sperner, “Ein Satz über Untermegen Einer Endlichen Menge”, Math. Z., 27 (1928), 544–548 | DOI | MR | Zbl
[9] J.A. Kalman, “Lattices with Involution”, Trans. Amer. Math. Soc., 87 (1958), 485–491 | DOI | MR | Zbl
[10] L.H. Kauffman, Proceedings of the Eighth International Symposium on Multiple-Valued Logic (Los Alamitos 1978), IEEE Computer Society Press, USA, CA, 1978, 82–86 | MR