A functional representation of free De Morgan algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 14-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that free Boolean algebra on $n$ free generators is isomorphic to the Boolean algebra of Boolean functions of $n$ variables. The free distributive lattice on $n$ free generators is isomorphic to the lattice of monotone Boolean functions of $n$ variables. In this paper we introduce the concept of De Morgan function and prove that the free De Morgan algebra on $n$ free generators is isomorphic to the De Morgan algebra of De Morgan functions of $n$ variables.
Keywords: monotone Boolean function, De Morgan function, free De Morgan algebra.
Mots-clés : antichain
@article{UZERU_2012_3_a2,
     author = {Yu. M. Movsisyan and V. A. Aslanyan},
     title = {A  functional representation of  free  {De} {Morgan}  algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--16},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/}
}
TY  - JOUR
AU  - Yu. M. Movsisyan
AU  - V. A. Aslanyan
TI  - A  functional representation of  free  De Morgan  algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 14
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/
LA  - en
ID  - UZERU_2012_3_a2
ER  - 
%0 Journal Article
%A Yu. M. Movsisyan
%A V. A. Aslanyan
%T A  functional representation of  free  De Morgan  algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 14-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/
%G en
%F UZERU_2012_3_a2
Yu. M. Movsisyan; V. A. Aslanyan. A  functional representation of  free  De Morgan  algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 14-16. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a2/

[1] R. Balbes, P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MU, 1974 | MR | Zbl

[2] A. Bialynicki–Birula, H. Rasiowa, “On the Representation of Quasi-Boolean Algebras”, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., 5 (1957), 259–261 | MR | Zbl

[3] J.A. Brzozowski, “A Characterization of De Morgan Algebras”, Int. J. of Algebra and Comp., 11 (2001), 525–527 | DOI | MR | Zbl

[4] R. Dedekind, “Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler”, Festschrift der Techn. Hochsch. Braunschwig bei Gelegenheit der 69, Versammlung deutscher und Ärzte, 1897, 1–40

[5] Z. Ésik, “Free De Morgan Bisemigroups and Bisemilattices”, Algebra Coll., 10 (2003), 23–32 | DOI | MR | Zbl

[6] G.C. Moisil, “Recherches Sur l'Álgebre de la Logique”, Annales Scientifiques de l'Úniversite de Jassy, 22 (1935), 1–117

[7] Yu.M. Movsisyan, “Binary Representations of Algebras with at Most Two Binary Operations: a Cayley Theorem for Distributive Lattices”, Int. J. of Algebra and Comp., 19 (2009), 97–106 | DOI | MR | Zbl

[8] E. Sperner, “Ein Satz über Untermegen Einer Endlichen Menge”, Math. Z., 27 (1928), 544–548 | DOI | MR | Zbl

[9] J.A. Kalman, “Lattices with Involution”, Trans. Amer. Math. Soc., 87 (1958), 485–491 | DOI | MR | Zbl

[10] L.H. Kauffman, Proceedings of the Eighth International Symposium on Multiple-Valued Logic (Los Alamitos 1978), IEEE Computer Society Press, USA, CA, 1978, 82–86 | MR