Influence of the Rashba and Dresselhaus spin-orbit interactions on the polaron properties of a two-dimensional electrons in semiconductor heterostructures
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 60-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interplay of the Rashba and Dresselhaus spin-orbit as well as the Fröhlich type electron-phonon interactions on the energy dispersion relation of the spin subbands in a two-dimensional electron gas in semiconductor polar heterostructures is studied theoretically. The Rayleigh-Schrodinger perturbation theory has been used to obtain in closed form the basic parameters of the polaron state (self-energy and effective mass) as a function of the Rashba and Dresselhaus coupling strengths.
Keywords: quantum well, spin-orbit
Mots-clés : polaron.
@article{UZERU_2012_3_a10,
     author = {K. A. Vardanyan},
     title = {Influence of the {Rashba} and {Dresselhaus} spin-orbit interactions on the polaron properties of a two-dimensional electrons in semiconductor heterostructures},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {60--64},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a10/}
}
TY  - JOUR
AU  - K. A. Vardanyan
TI  - Influence of the Rashba and Dresselhaus spin-orbit interactions on the polaron properties of a two-dimensional electrons in semiconductor heterostructures
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 60
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a10/
LA  - en
ID  - UZERU_2012_3_a10
ER  - 
%0 Journal Article
%A K. A. Vardanyan
%T Influence of the Rashba and Dresselhaus spin-orbit interactions on the polaron properties of a two-dimensional electrons in semiconductor heterostructures
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 60-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a10/
%G en
%F UZERU_2012_3_a10
K. A. Vardanyan. Influence of the Rashba and Dresselhaus spin-orbit interactions on the polaron properties of a two-dimensional electrons in semiconductor heterostructures. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 60-64. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a10/

[1] S.A. Wolf et al., “Spintronics: A Spin-Based Electronics Vision for the Future”, Science, 294 (2001), 1488 | DOI

[2] I. Zutić, J. Fabian, S. Das Sarma, “Spintronics: Fundamentals and Applications”, Rev. Mod. Phys., 76 (2004), 323 | DOI

[3] D. Heiss, M. Kroutvar, J.J. Finley, G. Abstreiter, “Progress Towards Single Spin Optoelectronics Using Quantum Dot Nanostructures”, Solid State Comm., 135 (2005), 519 | DOI

[4] D. Loss, D.P. DiVincenzo, “Quantum Computation with Quantum Dots”, Phys. Rev. A, 57 (1998), 120–126 | DOI

[5] S. Datta, B. Das, “Electronic Analog of the Electro-Optic Modulator”, Appl. Phys. Lett., 56 (1990), 665–667 | DOI

[6] S. Bandyopadhyay, M. Cahay, “Alternate Spintronic Analog of the Electro-Optic Modulator”, Appl. Phys. Lett., 85 (2004), 1814 | DOI

[7] E. Tutuc, E.P. De Poortere, S.J. Papadakis, M. Shayegan, “In-plane Magnetic FieldInduced Spin Polarization and Transition to Insulating Behavior in Two-Dimensional Hole Systems Phys”, Rev. Lett., 86 (2001), 2858–2861 | DOI

[8] J.P. Lu, J.B. Yau, S.P. Shukla, M. Shayegan, L. Wisinger, U. Rössler, R. Winkler, “Tunable Spin-Splitting and Spin-Resolved Ballistic Transport in GaAs/AlGaAs Two-Dimensional Holes”, Phys. Rev. Lett., 81 (1998), 1282 | DOI

[9] S.D. Ganichev, E.L. Ivchenko, V.V. Bel’kov, S.A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, W. Prett, “Spin-Galvanic Effect”, Nature, 417 (2002), 153–156 | DOI

[10] M.I. Dyakonov, V.I. Perel, “Possibility of Orienting Electron Spins with Current”, JETP Lett., 13 (1971), 467 (In russian)

[11] S. Murakami, N. Nagaosa, S.C. Zhang, “Dissipationless Quantum Spin Current at Room Temperature”, Science, 301 (2003), 1348 | DOI

[12] G. Dresselhaus, “Spin-Orbit Coupling Effects in Zinc Blende Structures”, Phys. Rev., 100 (1955), 580 | DOI | Zbl

[13] Y.A. Bychkov, E.I. Rashba, “Properties of a $2\mathrm{D}$ Electron Gas with Lifted Spectral Degeneracy”, JETP Lett., 33 (1984), 78

[14] Zh. Huang, L. Hu, “Controllable Kinetic Magnetoelectric Effect in Two-Dimensional Electron Gases with Both Rashba and Dresselhaus Spin-Orbit Couplings”, Phys. Rev. B, 73 (2006), 113312–15 | DOI

[15] J.D. Sau, R. Sensarma, S. Powell, I.B. Spielman, S. Das Sarma, “Chiral Rashba Spin Textures in Ultracold Fermi Gases”, Phys. Rev. B, 83 (2011), 140510 | DOI

[16] D.L. Campbell, G. Juzeliünas, I.B. Spielman, “Realistic Rashba and Dresselhaus Spin-Orbit Coupling for Neutral Atoms”, Phys. Rev. A, 84 (2011), 025602–05 | DOI

[17] E. Cappelluti, Grimaldi C., F. Marsiglio, “Electron-Phonon Effects on Spin-Orbit Split Bands of Two-Dimensional Systems”, Phys. Rev. B, 76 (2007), 085334–42 | DOI

[18] E. Cappelluti, C. Grimaldi, F. Marsiglio, “Topological Change of the Fermi Surface in Lowdensity Rashba Gases: Application to Superconductivity”, Phys. Rev. Lett., 98 (2007), 167002–05 | DOI

[19] C. Grimaldi, “Weak- and Strong-Coupling Limits of the Two-Dimensional Fröhlich Polaron with Spin-Orbit Rashba Interaction”, Phys. Rev. B, 77 (2008), 024306–16 | DOI

[20] X. Wu, F.M. Peeters, J.T. Devreese, “Exact and Approximate Results for the Ground-State Energy of a Fröhlich Polaron in Two-Dimensions”, Phys. Rev. B, 31 (1985), 3420–3426 | DOI

[21] S. Giglberger, L.E. Golub, V.V. Bel’kov, S.N. Danilov, D. Schuh, Ch. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss, W. Prettl, S.D. Ganichev, “Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells Measured by Spin Photocurrents”, Phys. Rev. B, 75 (2007), 035327–34 | DOI

[22] Zh. Li, Zh. Ma, A.R. Wright, Ch. Zhang, “Spin-Orbit Interaction Enhanced Polaron Effect in Two-Dimensional Semiconductors”, Appl. Phys. Lett., 90 (2007), 112103–05 | DOI