Mean distance between two points in a domain
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm{D}$ be a bounded convex domain in the Euclidean plane and we choose uniformly and independently two points in $\mathrm{D}$. How large is the mean distance $m(\mathrm{D})$ between these two points? Up to now, there were known explicit expressions for $m(\mathrm{D})$ only in three cases, when $\mathrm{D}$ is a disc, an equilateral triangle and a rectangle. In the present paper a formula for calculation of mean distance $m(\mathrm{D})$ by means of the chord length density function of $\mathrm{D}$ is obtained. This formula allows to find $m(\mathrm{D})$ for those domains $\mathrm{D}$, for which the chord length distribution is known. In particular, using this formula, we derive explicit forms of $m(\mathrm{D})$ for a disc, a regular triangle, a rectangle, a regular hexagon and a rhombus.
Keywords: chord length distribution function, mean distance, convex domain geometry.
@article{UZERU_2012_3_a0,
     author = {N. G. Aharonyan},
     title = {Mean distance between two points in a domain},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--8},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a0/}
}
TY  - JOUR
AU  - N. G. Aharonyan
TI  - Mean distance between two points in a domain
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 3
EP  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a0/
LA  - en
ID  - UZERU_2012_3_a0
ER  - 
%0 Journal Article
%A N. G. Aharonyan
%T Mean distance between two points in a domain
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 3-8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a0/
%G en
%F UZERU_2012_3_a0
N. G. Aharonyan. Mean distance between two points in a domain. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a0/

[1] L.A. Santalo, Integral Geometry and Geometric Probability, Nauka, M., 1983 | MR

[2] R. Schnider, W. Weil, Stochastic and Integral Geometry, Springer Verlag, Berlin–Heidelberg, 2008 | MR

[3] R. Sulanke, “Die Verteilung der Sehnenl Angen an Ebenen und r Aumlichen Figuren”, Math. Nachr., 23 (1961), 51–74 | DOI | MR | Zbl

[4] W. Gille, “The Chord Length Distribution of Parallelepipeds with Their Limiting Cases”, Exp. Techn. Phys., 36 (1988), 197–208

[5] N. Aharonyan, V. Ohanyan, “Chord Length Distribution Functions for Polygons”, Journal of Contemporary Mathem. Analysis, 40:4 (2005), 43–56 | MR

[6] H.S. Harutyunyan, “Chord Length Distribution Functions for Regular Hexagon”, Uchenie Zapiski EGU, 2007, no. 1, 17–24 (in Russian) | MR

[7] D. Stoyan, H. Stoyan, Fractals, Random Shapes and Point Fields, John Wiley $\$ Sons, Chichester–New York–Brisbane–Toronto–Singapore, 1994 | MR

[8] H.S. Harutyunyan, V.K. Ohanyan, “Chord Length Distribution Function for Regular Polygons”, Advances in Applied Probability, 41 (2009), 358–366 | DOI | MR | Zbl

[9] N.G. Aharonyan, V.K. Ohanyan, “Tomography of Bounded Convex Domains”, Sutra: International Journal of Mathematical Science Education, 2:1 (2009), 1–12 | Zbl

[10] H.S. Harutyunyan, V.K. Ohanyan, “Chord Length Distribution Cunction for Convex Polygons”, Sutra: International Journal of Mathem. Science Education, 4:2 (2011), 1–15

[11] B. Burgstaller, F. Pillichshammer, “The Average Distance Between Two Points”, Bull. Aust. Math. Soc., 80 (2009), 353–359 | DOI | MR | Zbl

[12] S.R. Dunbar, “The Average Distance Between Points in Geometric Gures”, College Math. J., 28 (1997), 187–197 | DOI | MR | Zbl