Random contraction schemes for extremal order statistics
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 29-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a few new types of random contraction and dilation schemes are considered. In particular, four one-sided additive schemes and two two-sided additive schemes are represented. All schemes has been built for sample extremes and exponential random variables. Characterizations of distributions for all those schemes are obtained.
Keywords: order statistics, sample extreme, random contraction, random dilation, characterization of distribution, two-sided contraction.
@article{UZERU_2012_2_a4,
     author = {V. K. Saghatelyan},
     title = {Random contraction schemes for extremal order statistics},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {29--34},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a4/}
}
TY  - JOUR
AU  - V. K. Saghatelyan
TI  - Random contraction schemes for extremal order statistics
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 29
EP  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a4/
LA  - en
ID  - UZERU_2012_2_a4
ER  - 
%0 Journal Article
%A V. K. Saghatelyan
%T Random contraction schemes for extremal order statistics
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 29-34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_2_a4/
%G en
%F UZERU_2012_2_a4
V. K. Saghatelyan. Random contraction schemes for extremal order statistics. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 29-34. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a4/

[1] A.G. Pakes, “Characterization by Invariance under Length-Biasing and Random Scaling”, J. Statist. Plann. Infer., 63 (1997), 285–310 | DOI | MR | Zbl

[2] A.G. Pakes, R. Khattree, “Length-Biasing, Characterizations of Laws and the Moment Problem”, Austral. NZ J. Statist., 49 (1992), 307–322 | DOI | MR

[3] A.G. Pakes, J. Navarro, “Distributional Characterizations through Scaling Relations”, Austral. NZ J. Statist., 49 (2007), 115–135 | DOI | MR | Zbl

[4] G.F Yeo., R.K. Milne, “On Characterizations of Beta and Gamma Distributions”, Statist. Probab. Lett., 11 (1991), 239–242 | DOI | MR | Zbl

[5] E. Beutner, U. Kamps, “Random Contraction and Random Dilation of Generalized Order Statistics”, Commun. Statist. Theory Meth., 37 (2008), 2185–2201 | DOI | MR | Zbl

[6] J. Navarro, “Characterizations by Power Contractions of Order Statistics”, Commun. Statist. Theory Methods, 37 (2008), 987–997 | DOI | MR | Zbl

[7] J. Wesołowsky, M. Ahsanullah, “Switching Order Statistics through Random Power Contractions”, Austral. NZ J. Statist., 46 (2004), 297–303 | DOI | MR | Zbl

[8] S. Oncel, M. Ahsanullah, F. Aliev, F. Aygun, “Switching Record and Order Statistics via Random Contractions”, Statist. Probab. Lett., 73 (2005), 207–217 | DOI | MR | Zbl

[9] H. David, Order Statistics, Wiley-Interscience, 2003, 482 pp. | MR | Zbl