Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2012_2_a3, author = {M. A. Nalbandyan}, title = {On one spectrum of universality for {Walsh} system}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {22--28}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/} }
TY - JOUR AU - M. A. Nalbandyan TI - On one spectrum of universality for Walsh system JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2012 SP - 22 EP - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/ LA - en ID - UZERU_2012_2_a3 ER -
M. A. Nalbandyan. On one spectrum of universality for Walsh system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/
[1] D. Menchoff, “Sur les sommes partielles des séries trigonométriques”, Rec. Math. [Mat. Sbornik] N.S., 20(62):2 (1947), 197–238 (in Russian) | MR | Zbl
[2] V. Ya. Kozlov, “On bases in the space $L_2[0,1]$”, Mat. Sb. (N.S.), 26(68):1 (1950), 85–102 (in Russian) | MR | Zbl
[3] A.A. Talalyan, “On convergence almost everywhere of subsequences of partial sums”, Izv. AN Arm. SSR, Physical and Mathematical Scienses, 10:3 (1957), 17–34 (in Russian) | MR
[4] Russian Math. Surveys, 15:5 (1960), 75–136 | DOI | MR | Zbl
[5] M.G. Grigorian, Izv. NAN Armenii, Physical and Mathematical Scienses, 35:4 (2000), 23–29 (in Russian) | MR
[6] W. Orlicz, “Über die unabhängig von der Anordnung fast überall konvergenten Funktionenreihen”, Bull. de l’Academie Polonaise des Sciences,, 81 (1927), 117–125
[7] G.M. Fichtengolz, A Course of Differential and Integral Calculus, Nauka, M., 1996 (in Russian)
[8] G. Kozma, A. Olevskii, “Menshov Representation Spectra”, J. Anal. Math., 84 (2001), 361–393 | DOI | MR | Zbl
[9] Russian Math. (Iz. VUZ), 53:10 (2009), 45–56 | DOI | MR | Zbl | Zbl
[10] J.L. Walsh, “A Closed Set of Normal Orthogonal Functions”, Amer. J. Math., 45 (1923), 5–24 | DOI | MR | Zbl
[11] R.E.A.C. Paley, “A Remarkable Series of Orthogonal Functions (I), (II)”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl