On one spectrum of universality for Walsh system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work it is shown that the set $D=\left\{\displaystyle\sum_{i=0}^{\infty}\delta_i2^{N_i} :\delta_i=0,1\right\}$ for every sequence $N_0$ of natural numbers can be changed into the set of the form $\Lambda=\left\{k+o(\omega(k)):k\in D\right\}$ , where $\omega(k)$ is an arbitrary, tending to infinity at $k\to+\infty$ sequence, such that $\Lambda$ is the spectrum of universality for Walsh system.
Keywords: Walsh system, universal series, representation theorems, representations by subsystems.
@article{UZERU_2012_2_a3,
     author = {M. A. Nalbandyan},
     title = {On  one  spectrum  of  universality  for  {Walsh}  system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--28},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/}
}
TY  - JOUR
AU  - M. A. Nalbandyan
TI  - On  one  spectrum  of  universality  for  Walsh  system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 22
EP  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/
LA  - en
ID  - UZERU_2012_2_a3
ER  - 
%0 Journal Article
%A M. A. Nalbandyan
%T On  one  spectrum  of  universality  for  Walsh  system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 22-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/
%G en
%F UZERU_2012_2_a3
M. A. Nalbandyan. On  one  spectrum  of  universality  for  Walsh  system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/