On one spectrum of universality for Walsh system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work it is shown that the set $D=\left\{\displaystyle\sum_{i=0}^{\infty}\delta_i2^{N_i} :\delta_i=0,1\right\}$ for every sequence $N_0$ of natural numbers can be changed into the set of the form $\Lambda=\left\{k+o(\omega(k)):k\in D\right\}$ , where $\omega(k)$ is an arbitrary, tending to infinity at $k\to+\infty$ sequence, such that $\Lambda$ is the spectrum of universality for Walsh system.
Keywords: Walsh system, universal series, representation theorems, representations by subsystems.
@article{UZERU_2012_2_a3,
     author = {M. A. Nalbandyan},
     title = {On  one  spectrum  of  universality  for  {Walsh}  system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--28},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/}
}
TY  - JOUR
AU  - M. A. Nalbandyan
TI  - On  one  spectrum  of  universality  for  Walsh  system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 22
EP  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/
LA  - en
ID  - UZERU_2012_2_a3
ER  - 
%0 Journal Article
%A M. A. Nalbandyan
%T On  one  spectrum  of  universality  for  Walsh  system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 22-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/
%G en
%F UZERU_2012_2_a3
M. A. Nalbandyan. On  one  spectrum  of  universality  for  Walsh  system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/

[1] D. Menchoff, “Sur les sommes partielles des séries trigonométriques”, Rec. Math. [Mat. Sbornik] N.S., 20(62):2 (1947), 197–238 (in Russian) | MR | Zbl

[2] V. Ya. Kozlov, “On bases in the space $L_2[0,1]$”, Mat. Sb. (N.S.), 26(68):1 (1950), 85–102 (in Russian) | MR | Zbl

[3] A.A. Talalyan, “On convergence almost everywhere of subsequences of partial sums”, Izv. AN Arm. SSR, Physical and Mathematical Scienses, 10:3 (1957), 17–34 (in Russian) | MR

[4] Russian Math. Surveys, 15:5 (1960), 75–136 | DOI | MR | Zbl

[5] M.G. Grigorian, Izv. NAN Armenii, Physical and Mathematical Scienses, 35:4 (2000), 23–29 (in Russian) | MR

[6] W. Orlicz, “Über die unabhängig von der Anordnung fast überall konvergenten Funktionenreihen”, Bull. de l’Academie Polonaise des Sciences,, 81 (1927), 117–125

[7] G.M. Fichtengolz, A Course of Differential and Integral Calculus, Nauka, M., 1996 (in Russian)

[8] G. Kozma, A. Olevskii, “Menshov Representation Spectra”, J. Anal. Math., 84 (2001), 361–393 | DOI | MR | Zbl

[9] Russian Math. (Iz. VUZ), 53:10 (2009), 45–56 | DOI | MR | Zbl | Zbl

[10] J.L. Walsh, “A Closed Set of Normal Orthogonal Functions”, Amer. J. Math., 45 (1923), 5–24 | DOI | MR | Zbl

[11] R.E.A.C. Paley, “A Remarkable Series of Orthogonal Functions (I), (II)”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl