On one spectrum of universality for Walsh system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present work it is shown that the set $D=\left\{\displaystyle\sum_{i=0}^{\infty}\delta_i2^{N_i} :\delta_i=0,1\right\}$ for every sequence $N_0$ of natural numbers can be changed into the set of the form $\Lambda=\left\{k+o(\omega(k)):k\in D\right\}$ , where $\omega(k)$ is an arbitrary, tending to infinity at $k\to+\infty$ sequence, such that $\Lambda$ is the spectrum of universality for Walsh system.
Keywords:
Walsh system, universal series, representation theorems, representations by subsystems.
@article{UZERU_2012_2_a3,
author = {M. A. Nalbandyan},
title = {On one spectrum of universality for {Walsh} system},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {22--28},
publisher = {mathdoc},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/}
}
TY - JOUR AU - M. A. Nalbandyan TI - On one spectrum of universality for Walsh system JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2012 SP - 22 EP - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/ LA - en ID - UZERU_2012_2_a3 ER -
M. A. Nalbandyan. On one spectrum of universality for Walsh system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 22-28. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a3/