On functional symbol-free logic programs
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 43-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article logic programs (both with and without negation) that do not use functional symbols are studied. Three algorithmic problems for functional symbol-free programs are investigated: the existence of a solvable interpreter, the problem of $\Delta$-equivalence and the problem of logical equivalence. The first two problems are known to be decidable for functional symbol-free definite programs. We show that the third one is also decidable for such programs. In contrast, all three problems are shown to be undedicable for functional symbol-free general programs.
Keywords: logic programming, functional symbol-free programs, algorithmic problems.
@article{UZERU_2012_1_a7,
     author = {L. A. Haykazyan},
     title = {On functional symbol-free logic programs},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {43--48},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_1_a7/}
}
TY  - JOUR
AU  - L. A. Haykazyan
TI  - On functional symbol-free logic programs
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 43
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_1_a7/
LA  - en
ID  - UZERU_2012_1_a7
ER  - 
%0 Journal Article
%A L. A. Haykazyan
%T On functional symbol-free logic programs
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 43-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_1_a7/
%G en
%F UZERU_2012_1_a7
L. A. Haykazyan. On functional symbol-free logic programs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 43-48. http://geodesic.mathdoc.fr/item/UZERU_2012_1_a7/

[1] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1984, 124 pp. | MR | Zbl

[2] K.L. Clark, “Negation as Failure”, Logic and Data Bases, eds. Gallaire H., Minker J., Plenum Press, NY, 1978, 292–322 | MR

[3] S.A. Nigiyan, L.O. Khachoyan, “Transformations of Logic Programs”, Programming and Computer Software, 23 (1997), 302–309 | MR | Zbl

[4] S.A. Nigiyan, L.O. Khachoyan, “On $A$-equivalence of Logic Programs”, Dokladi NAN Armenii, 99:2 (1999), 99–103 (in Russian) | MR

[5] J. Lloyd, R. Topor, “Making Prolog more Expressive”, Journal of Logic Programming, 1 (1984), 225–240 | DOI | MR | Zbl

[6] R.M. Robinson, “An Essentially Undecidable Axiom System”, Proceedings of International Congress of Mathematics, 1950