On the independence numbers of the powers of $C_5$ graph
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 38-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper independence numbers of the powers of $C_5$ graph is investigated. Independence number of the $3$rd degree of $C_5$ is calculated and a method is given that can help calculate independence numbers of higher degrees of $C_5$. Independence number of the $3$rd degree of $C_5$ is also calculated by the given method.
Keywords: independence number, powers of odd cycles, Shannon capacity.
@article{UZERU_2012_1_a6,
     author = {S. H. Badalyan and A. Zh. Mnatsakanyan},
     title = {On the independence numbers of the powers of $C_5$ graph},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {38--42},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_1_a6/}
}
TY  - JOUR
AU  - S. H. Badalyan
AU  - A. Zh. Mnatsakanyan
TI  - On the independence numbers of the powers of $C_5$ graph
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 38
EP  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_1_a6/
LA  - en
ID  - UZERU_2012_1_a6
ER  - 
%0 Journal Article
%A S. H. Badalyan
%A A. Zh. Mnatsakanyan
%T On the independence numbers of the powers of $C_5$ graph
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 38-42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_1_a6/
%G en
%F UZERU_2012_1_a6
S. H. Badalyan; A. Zh. Mnatsakanyan. On the independence numbers of the powers of $C_5$ graph. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 38-42. http://geodesic.mathdoc.fr/item/UZERU_2012_1_a6/

[1] C.E. Shannon, “The Zero-Error Capacity of a Noisy Channel”, Institute of Radio Engineers, Transactions on Information Theory, IT-2 (1956), 8–19 | DOI | MR

[2] L. Lovasz, “On the Shannon Capacity of a Graph”, IEEE Transactions on Information Theory, IT-25 (1979), 1–7 | DOI | MR | Zbl

[3] A. Vesel, J. Zerovnik, “Information Processing Letters $C_7$”, Information Processing Letters, 81:5 (2002), 277–282 | DOI | MR | Zbl

[4] R.S. Hales, “Numerical invariants and the strong product of graphs”, Journal of Combinatorial Theory B, 15 (1973), 146–155 | DOI | MR | Zbl

[5] M. Rosenfeld, “On a problem of C. E. Shannon in graph theory”, Proc. Amer. Math. Soc., 18 (1967), 315–319 | DOI | MR | Zbl

[6] E. Sonnemann, O. Krafft, “Independence numbers of product graphs”, Journal of Combinatorial Theory B, 17 (1974), 133–142 | DOI | MR | Zbl