On $q$-bilattices
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 9-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the concept of $q$-bilattice is studied. Interlaced $q$-bilattices are characterized by the pair of congruencies.
Keywords: $q$-semilattice, $q$-lattice, $q$-bilattice, an interlaced $q$-bilattice, hyperidentity.
@article{UZERU_2011_3_a1,
     author = {D. S. Davidova},
     title = {On $q$-bilattices},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {9--16},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a1/}
}
TY  - JOUR
AU  - D. S. Davidova
TI  - On $q$-bilattices
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 9
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a1/
LA  - en
ID  - UZERU_2011_3_a1
ER  - 
%0 Journal Article
%A D. S. Davidova
%T On $q$-bilattices
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 9-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_3_a1/
%G en
%F UZERU_2011_3_a1
D. S. Davidova. On $q$-bilattices. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 9-16. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a1/

[1] M.L. Ginsberg, “Multivalued logics: a uniform approach to reasoning in artificial intelligence”, Computational Intelligence, 4 (1988), 265–316 | DOI

[2] M.L. Ginsberg, “Multi-Valued Logics”, Proc. AAA-186. Fifth National Conference on Artificial Intelligence (Morgan Kaufman Pablishers), 1986, 243–247

[3] M.C. Fitting, “Bilattices in Logic Programming.”, Proc. 20th Internat. Symp. on Multiple-Valued Logic, ed. G. Epstain, IEEE, New York, 1990, 63–70

[4] M.C. Fitting, “Bilattices and the semantics of logic programming”, Journal of Logic Programming, 11 (1991), 91–116 | DOI | MR | Zbl

[5] B. Mobasher, D. Pigozzi, G. Slutski, “Multi-valued logic programming semantics”, Theoretical Computer Science, 171 (1997), 77—109 | DOI | MR | Zbl

[6] A.B. Romanowska, A. Trakul, “On the Structure of Some Bilattices”, Universal and Applied Algebra, World Scientific, 1989, 235–253. | MR | Zbl

[7] A. Avron, “The structure of interlaced bilattices”, Math. Struct. in Comp. Science, 6 (1996), 287–289, Cambridge University Press. | DOI | MR

[8] Yu.M. Movsisyan, A.B. Romanowska, J.D.H. Smith, “Superproducts, hyperidentities and algebraic structures of logic programming”, Comb. Math.and Comb. Comp., 58 (2006), 101–111 | MR | Zbl

[9] Yu M. Movsisyan, “Interlaced, modular, distributive and Boolean bilattices”, Armenian Journal of Mathematics, 1 (2008), 7–13 | MR | Zbl

[10] Proc. Steklov Inst. Math., 274 (2011), 174–192 | DOI | MR | Zbl

[11] I. Chajda, “Lattices in quasiordered sets”, Acta Polacky University, 31 (1992), 6–12 | MR | Zbl

[12] Yu.M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities, YSU Press, Yer., 1986 (in Russian) | MR

[13] Yu.M. Movsisyan, Hyperidentities and Hypervarieties in Algebras, YSU Press, Yer., 1990 (in Russian) | MR

[14] Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | DOI | MR | Zbl

[15] Russian Acad. Sci. Izv. Math., 40:3 (1993), 607–622 | DOI | MR | Zbl

[16] Izv. Math., 60:6 (1996), 1219–1260 | DOI | DOI | MR | Zbl

[17] K. Denecke, S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers, 2000 | MR | Zbl

[18] K. Denecke, J. Koppitz, M-Solid Varieties of Algebras, Advances in Mathematic, 10, Spriger-Science+Business Media, NY, 2006, 341 pp. | MR | Zbl

[19] A.D. Anosov, “On homomorphisms of many-sorted algebraic systems in connection with cryptographic applications”, Discrete Mathematics and Applications, 17:4 (2007), 331–347 | DOI | MR | Zbl

[20] G. Gratzer, General Lattice Theory, Springer-Verlag, Berlin, 1978 | MR