Decidability of $\Delta$-equivalence problem for monadic logic programs
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 50-54
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper the $\Delta$-equivalence problem of monadic logic programs (logic programs using only monadic functional and predicate symbols) is investigated. It is shown that contrary to the general case, the relation of $\Delta$-equivalence is decidable in case of monadic programs. Our proof is based on the decidability of Rabin’s monadic second order logic of successor functions.
Keywords:
logic programming, $\Delta$-equivalence.
@article{UZERU_2011_2_a8,
author = {L. A. Haykazyan},
title = {Decidability of $\Delta$-equivalence problem for monadic logic programs},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {50--54},
year = {2011},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a8/}
}
TY - JOUR AU - L. A. Haykazyan TI - Decidability of $\Delta$-equivalence problem for monadic logic programs JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 50 EP - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a8/ LA - en ID - UZERU_2011_2_a8 ER -
L. A. Haykazyan. Decidability of $\Delta$-equivalence problem for monadic logic programs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 50-54. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a8/
[1] S.A. Nigiyan, L.O. Khachoyan, “Transformations of Logic Programs”, Programming and Computer Software, 23 (1997), 302–309 (in Russian) | MR | Zbl
[2] A. Matos, “Monadic logic programs and functional complexity”, Theoretical Computer Science, 176 (1997), 175–204 | DOI | MR | Zbl
[3] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1984, 124 pp. | MR | Zbl
[4] M. Rabin, “Decidability of second-order theories and automata on infinite trees”, Bulletin of the American Mathematical Society, 74 (1968), 1025–1029 | DOI | MR | Zbl