Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2011_2_a4, author = {Hosein Ansari}, title = {Degenerate differential-operator equations on infinite interval}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {27--32}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a4/} }
TY - JOUR AU - Hosein Ansari TI - Degenerate differential-operator equations on infinite interval JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 27 EP - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a4/ LA - en ID - UZERU_2011_2_a4 ER -
Hosein Ansari. Degenerate differential-operator equations on infinite interval. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 27-32. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a4/
[1] Proc. Steklov Inst. Math., 170 (1987), 185–218 | MR | Zbl | Zbl
[2] L.P. Tepoyan, Ansari Hosein, “Degenerate Ordinary Differential Equations of Fourth Order in Infinite Interval”, Vestnik RAU. Physical-Mathematical and Natural Sciences, 2010, no. 1, 3–10 (in Russian)
[3] Math. USSR-Sb., 43:3 (1982), 287–298 | DOI | MR | Zbl | Zbl
[4] L.P. Tepoyan, “Degenerate Fourth-Order Differential-Operator Equations”, Differential’nye Urawneniya, 23:8 (1987), 1366–1376 (in Russian) | MR | Zbl
[5] L.P. Tepoyan, “On a degenerate differential-operator equation”, Izv. NAN Armenii. Matematika, 34:5 (1999), 48–56 | MR | Zbl
[6] A.A. Dezin, Partial Differential Equations (An Introduction to a General Theory of Linear Boundary Value Problems), Springer, 1987 | MR | Zbl
[7] J. M. Berezanski, Expansion in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs, 17, American Mathematical Society, Providence, 1968 | MR