The generalized entropic property for the mono-$n$-ary algebra
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show by using the laws of pseudo-distributivity that every idempotent and commutative algebra with one $n$-ary operation satisfying the generalized entropic property is entropic.
Keywords: complex algebra, entropic algebra, generalized entropic property.
Mots-clés : mode
@article{UZERU_2011_2_a10,
     author = {Amir Ehsani},
     title = {The generalized entropic property for the mono-$n$-ary algebra},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {63--66},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a10/}
}
TY  - JOUR
AU  - Amir Ehsani
TI  - The generalized entropic property for the mono-$n$-ary algebra
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 63
EP  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a10/
LA  - en
ID  - UZERU_2011_2_a10
ER  - 
%0 Journal Article
%A Amir Ehsani
%T The generalized entropic property for the mono-$n$-ary algebra
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 63-66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_2_a10/
%G en
%F UZERU_2011_2_a10
Amir Ehsani. The generalized entropic property for the mono-$n$-ary algebra. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 63-66. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a10/

[1] G. Grätzer, H. Lakser, “Identities for globals (complex algebras) of algebras”, Colloq. Math., 56 (1988), 19–29 | MR | Zbl

[2] C. Brink, “Power structures”, Algebra Universalis, 30 (1993), 177–216 | DOI | MR | Zbl

[3] I. Bošnjak, R. Madarász, “On power structures”, Algebra and Discr. Math., 2 (2003), 14–35 | MR

[4] A. Romanowska, J.D.H. Smith, Geometry and Convexity, Heldermann Verlag, Berlin, 1985 | MR | Zbl

[5] A. Romanowska, J.D.H. Smith, “On the structure of subalgebra systems of idempotent entropic algebras”, J. Algebra, 120 (1989) | MR

[6] A. Romanowska, J.D.H. Smith, Modes, World Scientific, 2002 | MR

[7] K. Adaricheva, A. Pilitowska, D. Stanovský, On Complex Algebras of Subalgebras, 2006, arXiv: 0610832v1 [math.RA] | MR

[8] Yu.M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities, YSU Press, Yer., 1986 (in Russian) | MR

[9] Yu.M. Movsisyan, Hyperidentities and Hypervarieties in Algebras, YSU Press, Yer., 1990 (in Russian) | MR

[10] Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | DOI | MR | Zbl

[11] J. Ježek, T. Kepka, Medial Groupoids, Rozpravy ČSAV, Praha, 1983, 93 pp. | MR | Zbl

[12] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981 | MR | Zbl

[13] T. J. Evans, “Properties of Algebras Almost Equivalent to Identities”, London Math. Soc., 35 (1962), 53–59 | DOI | MR