Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2010_3_a8, author = {S. G. Gevorgyan and S. T. Muradyan and M. H. Azaryan and G. H. Karapetyan}, title = {Method for measuring thickness of thin objects with a nanometer resolution, based on the single-layer flat-coil-oscillator method}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {63--67}, publisher = {mathdoc}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2010_3_a8/} }
TY - JOUR AU - S. G. Gevorgyan AU - S. T. Muradyan AU - M. H. Azaryan AU - G. H. Karapetyan TI - Method for measuring thickness of thin objects with a nanometer resolution, based on the single-layer flat-coil-oscillator method JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 63 EP - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_3_a8/ LA - en ID - UZERU_2010_3_a8 ER -
%0 Journal Article %A S. G. Gevorgyan %A S. T. Muradyan %A M. H. Azaryan %A G. H. Karapetyan %T Method for measuring thickness of thin objects with a nanometer resolution, based on the single-layer flat-coil-oscillator method %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2010 %P 63-67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2010_3_a8/ %G en %F UZERU_2010_3_a8
S. G. Gevorgyan; S. T. Muradyan; M. H. Azaryan; G. H. Karapetyan. Method for measuring thickness of thin objects with a nanometer resolution, based on the single-layer flat-coil-oscillator method. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2010), pp. 63-67. http://geodesic.mathdoc.fr/item/UZERU_2010_3_a8/
[1] D.A. Cole, J.R. Shallenberger et al., “$\mathrm{SiO_2}$ thickness determination by $X$-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry”, J. Vacuum Science $\$ Technol. B, 18 (2000), 440–444 | DOI
[2] A. Franquet, J. De Laet, T. Schram et al., “Determination of the thickness of thin silane films on aluminium surfaces by means of spectroscopic ellipsometry”, Thin Solid Films, 384:1 (2001), 37–45 | DOI
[3] V.A. Bikov, Topical review on Probe Microscopes, Doctoral Degree Dissertation RF, M., 2000 (in Russian)
[4] G. Binning, H. Rohrer, Scanning Tunneling Microscope, U.S. Patent 4343993. Aug. 10, 1982, 1982
[5] G. Binning et al., “Tunneling through a controllable vacuum gap”, Appl. Phys. Lett., 40 (1982), 178–180 | DOI
[6] R. Binning ,C. Quate et al., “Atomic Force Microscope”, Phys. Rev. Lett., 56 (1986), 930 | DOI
[7] S. Gevorgyan, T. Kiss, A. Movsisyan, H. Shirinyan, Y. Hanayama, H. Katsube, T. Ohyama, M. Takeo, T. Matsushita, K. Funaki, “Highly sensitive open-flat coil magnetometer for the $\lambda(H,T)$ measurements in plate-like high-$T_c$ cuprates”, Rev. Sci. Instr., 71:3 (2000), 1488–1994. | DOI
[8] S.G. Gevorgyan, T. Kiss, T. Ohyama, A. Movsisyan, H. Shirinyan, V.S. Gevorgyan, T. Matsushita, M. Takeo, K. Funaki, “Calibration of the open-flat coil-based tunnel diode oscillator technique (OFC magnetometer) for quantitative extraction of physical characteristics of superconductive state”, Physica C: Supercond. $\$ Appl., 366:1 (2001), 6–12 | DOI