Non-unitarizable groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2010), pp. 40-43

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is called unitarizable, if every uniformly bounded representation $\pi:G\to B(H)$ of $G$ on a Hilbert space $H$ is unitarizable. N. Monod and N. Ozawa in [6] prove that free Burnside groups $B(m,n)$ are non unitarizable for arbitrary composite odd number $n=n_1n_2$, where $n_\geq665$. We prove that for the same $n$ the groups $B(4,n)$ have continuum many non-isomorphic factor-groups, each one of which is non-unitarizable and uniformly non-amenable.
Keywords: representation of group, unitarizable group, free Burnside group, periodic group.
@article{UZERU_2010_3_a4,
     author = {H. R. Rostami},
     title = {Non-unitarizable groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {40--43},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/}
}
TY  - JOUR
AU  - H. R. Rostami
TI  - Non-unitarizable groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 40
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/
LA  - en
ID  - UZERU_2010_3_a4
ER  - 
%0 Journal Article
%A H. R. Rostami
%T Non-unitarizable groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 40-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/
%G en
%F UZERU_2010_3_a4
H. R. Rostami. Non-unitarizable groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2010), pp. 40-43. http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/