Non-unitarizable groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2010), pp. 40-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is called unitarizable, if every uniformly bounded representation $\pi:G\to B(H)$ of $G$ on a Hilbert space $H$ is unitarizable. N. Monod and N. Ozawa in [6] prove that free Burnside groups $B(m,n)$ are non unitarizable for arbitrary composite odd number $n=n_1n_2$, where $n_\geq665$. We prove that for the same $n$ the groups $B(4,n)$ have continuum many non-isomorphic factor-groups, each one of which is non-unitarizable and uniformly non-amenable.
Keywords: representation of group, unitarizable group, free Burnside group, periodic group.
@article{UZERU_2010_3_a4,
     author = {H. R. Rostami},
     title = {Non-unitarizable groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {40--43},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/}
}
TY  - JOUR
AU  - H. R. Rostami
TI  - Non-unitarizable groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 40
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/
LA  - en
ID  - UZERU_2010_3_a4
ER  - 
%0 Journal Article
%A H. R. Rostami
%T Non-unitarizable groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 40-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/
%G en
%F UZERU_2010_3_a4
H. R. Rostami. Non-unitarizable groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2010), pp. 40-43. http://geodesic.mathdoc.fr/item/UZERU_2010_3_a4/

[1] J. Dixmier, “Les moyennes invariantes dans les semi-groups et leurs applications”, Acta Sci. Math. Szeged, 1950, no. 12, 213–227 | MR | Zbl

[2] M. M. Day, “Means For The Bounded Functions And Ergodicity Of The Bounded Representations Of Semi-Groups”, Trans. Amer. Math. Soc., 1950, no. 69, 276–291 | DOI | MR | Zbl

[3] L. Ehrenpreis, F.I. Mautner, “Uniformly Bounded Representations Of Groups”, Proc. Nat. Acad. Sc. USA, 41 (1955), 231–233. | DOI | MR | Zbl

[4] G. Pisier, Are Unitarizable Groups Amenable?, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 323–362 | DOI | MR | Zbl

[5] N. Monod, N. Ozawa, “The Dixmier problem, lamplighters and Burnside groups”, Journal of Functional Analysis, 258:1 (2010), 255–259 | DOI | MR | Zbl

[6] Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl

[7] Math. Notes, 87:6 (2010), 908–911 | DOI | DOI | MR | Zbl

[8] A. Yu. Ol'shanskii, “Self-Normalization of Free Subgroups in the Free Burnside Groups”, Groups, Rings, Lie and Hopf Algebras, Mathematics and Its Applications, 555, Kluwer Acad. Publ., Dordrecht, 2003, 179–187 | MR | Zbl

[9] J. Math. Sci., 166:6 (2010), 691–703 | DOI | MR | Zbl

[10] S.I. Adyan, Burnside Problem and Identities in Groups, Nauka, M., 1975 (in Russian) | MR | Zbl

[11] Math. Notes, 82:4 (2007), 443–447 | DOI | DOI | MR | Zbl

[12] Izv. Math., 73:5 (2009), 861–892 | DOI | DOI | MR | Zbl

[13] G.N.Arzhantseva, J.Burillo, M.Lustig , L.Reeves, H.Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | DOI | MR | Zbl

[14] Math. Notes, 85:4 (2009), 496–502 | DOI | DOI | MR | Zbl | Zbl