Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2010_2_a5, author = {S. H. Badalyan and S. Y. Markosyan}, title = {On independence number of strong generalized cycles product}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {35--40}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/} }
TY - JOUR AU - S. H. Badalyan AU - S. Y. Markosyan TI - On independence number of strong generalized cycles product JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 35 EP - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/ LA - en ID - UZERU_2010_2_a5 ER -
%0 Journal Article %A S. H. Badalyan %A S. Y. Markosyan %T On independence number of strong generalized cycles product %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2010 %P 35-40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/ %G en %F UZERU_2010_2_a5
S. H. Badalyan; S. Y. Markosyan. On independence number of strong generalized cycles product. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 35-40. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/
[1] C.E. Shannon, “The Zero-error Capacity of a Noisy Channel”, Date of Current Version: 06 January 2003, IRE Transactions on Information Theory, 2 (1956), 8–19 | DOI | MR
[2] L. Lovasz, “On the Shannon Capacity of a Graph”, Date of Current Version: 06 January 2003, IEEE Transactions on Information Theory, 25 (1979), 1–7 | DOI | MR | Zbl
[3] C. Berge, Théorie Des Graphes et Ses Applications, Dunod, Paris, 1958 | MR
[4] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Amer. Math. Soc., Providence, R.I., 1962 | MR | Zbl
[5] M. Rosenfeld, “On a problem of C. E. Shannon in graph theory”, Proc. Amer. Math. Soc., 18 (1967), 315–319 | DOI | MR | Zbl
[6] R.S. Hales, “Numerical invariants and the strong product of graphs”, Combin. Theory B, 15 (1973), 146–155 | DOI | MR | Zbl
[7] S.H. Badalyan, S.E. Markosyan, “The Stable Set Number for the Strong Product of Generalized Cycles”, Transactions of IIAP of NAS RA: Mathematical Problems of Computer Science, 32, 2009, 27–34
[8] A.G. Markosyan, “On number of internal stability of simple cycles of cartesian factors”, Izv. AN Arm. SSR. Matematika, 6:5 (1971), 386–392 (in Russian) | MR
[9] A. Schrijver, Combinatorial Optimization, v. B, Springer–Verlag, Berlin–Heidelberg–New York, 2003 | Zbl
[10] M. Valencia-Pabon J. Vera, “Independence and coloring properties of direct products of some vertex-transitive graphs”, Discrete Math., 306 (2006), 2275–2281 | DOI | MR | Zbl