On independence number of strong generalized cycles product
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 35-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper the independence number of generalized cycles product is investigated. A method for constructing the maximal independent set in the product graph is presented. The method is particularly based on a specific combinatorial problem, which is also solved in the paper. The main result generalizes the similar fact known for odd cycles [6].
Keywords:
independence number, generalized cycles.
Mots-clés : cycles product
Mots-clés : cycles product
@article{UZERU_2010_2_a5,
author = {S. H. Badalyan and S. Y. Markosyan},
title = {On independence number of strong generalized cycles product},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {35--40},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/}
}
TY - JOUR AU - S. H. Badalyan AU - S. Y. Markosyan TI - On independence number of strong generalized cycles product JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 35 EP - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/ LA - en ID - UZERU_2010_2_a5 ER -
%0 Journal Article %A S. H. Badalyan %A S. Y. Markosyan %T On independence number of strong generalized cycles product %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2010 %P 35-40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/ %G en %F UZERU_2010_2_a5
S. H. Badalyan; S. Y. Markosyan. On independence number of strong generalized cycles product. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 35-40. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a5/