A mixed problem for the fourth order degenerate ordinary differential equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 16-19
Voir la notice de l'article provenant de la source Math-Net.Ru
A mixed problem for the equation $Lu\equiv(t^{\alpha}u^{\prime\prime})^{\prime\prime}+au=f$ where $0\leq\alpha\leq 4$, $t\in[0,b]$, $f\in L_2(0,b)$ is considered. Firstly, the weighted Sobolev spaces $W_{\alpha}^2, W_{\alpha}^2(0), W_{\alpha}^2(b)$ and the generalized solution for the equation are defined. Next, the existence and uniqueness of the generalized solution for the mixed problem is studied, as well as the description of the spectrum of corresponding operator is given.
Keywords:
mixed problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.
@article{UZERU_2010_2_a2,
author = {Esmail Yousefi},
title = {A mixed problem for the fourth order degenerate ordinary differential equation},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {16--19},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/}
}
TY - JOUR AU - Esmail Yousefi TI - A mixed problem for the fourth order degenerate ordinary differential equation JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 16 EP - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/ LA - en ID - UZERU_2010_2_a2 ER -
%0 Journal Article %A Esmail Yousefi %T A mixed problem for the fourth order degenerate ordinary differential equation %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2010 %P 16-19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/ %G en %F UZERU_2010_2_a2
Esmail Yousefi. A mixed problem for the fourth order degenerate ordinary differential equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 16-19. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/