Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2010_2_a2, author = {Esmail Yousefi}, title = {A mixed problem for the fourth order degenerate ordinary differential equation}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {16--19}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/} }
TY - JOUR AU - Esmail Yousefi TI - A mixed problem for the fourth order degenerate ordinary differential equation JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 16 EP - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/ LA - en ID - UZERU_2010_2_a2 ER -
%0 Journal Article %A Esmail Yousefi %T A mixed problem for the fourth order degenerate ordinary differential equation %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2010 %P 16-19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/ %G en %F UZERU_2010_2_a2
Esmail Yousefi. A mixed problem for the fourth order degenerate ordinary differential equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 16-19. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/
[1] Math. USSR-Sb., 43:3 (1982), 287–298 | DOI | MR | Zbl | Zbl
[2] proc Amer. Math. Society, 23:8 (1988), 930–939 | MR | Zbl
[3] L.P. Tepoyan, “On a Degenerate Differential-Operator Equation of Higher Order”, Izv. NAN Armenii. Matematika, 34:5 (1999), 48–56 | MR | Zbl
[4] L. P. Tepoyan, Kalvand Daryoush, “Neumann problem for fourth order degenerate ordinary differential equations”, Proceedings of the YSU. Phys. and Mathem. Sciences, 2010, no. 1, 22–26 | Zbl
[5] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations, Electron. J. Diff. Eqns / Monograph-01, 1994 | MR
[6] A.A. Dezin, Partial Differential Equations (An Introduction to a General Theory of Linear Boundary Value Problems), Springer, 1987 | MR | Zbl