A mixed problem for the fourth order degenerate ordinary differential equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 16-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed problem for the equation $Lu\equiv(t^{\alpha}u^{\prime\prime})^{\prime\prime}+au=f$ where $0\leq\alpha\leq 4$, $t\in[0,b]$, $f\in L_2(0,b)$ is considered. Firstly, the weighted Sobolev spaces $W_{\alpha}^2, W_{\alpha}^2(0), W_{\alpha}^2(b)$ and the generalized solution for the equation are defined. Next, the existence and uniqueness of the generalized solution for the mixed problem is studied, as well as the description of the spectrum of corresponding operator is given.
Keywords: mixed problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.
@article{UZERU_2010_2_a2,
     author = {Esmail Yousefi},
     title = {A mixed problem for the fourth order degenerate ordinary differential equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--19},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/}
}
TY  - JOUR
AU  - Esmail Yousefi
TI  - A mixed problem for the fourth order degenerate ordinary differential equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 16
EP  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/
LA  - en
ID  - UZERU_2010_2_a2
ER  - 
%0 Journal Article
%A Esmail Yousefi
%T A mixed problem for the fourth order degenerate ordinary differential equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 16-19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/
%G en
%F UZERU_2010_2_a2
Esmail Yousefi. A mixed problem for the fourth order degenerate ordinary differential equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 16-19. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a2/

[1] Math. USSR-Sb., 43:3 (1982), 287–298 | DOI | MR | Zbl | Zbl

[2] proc Amer. Math. Society, 23:8 (1988), 930–939 | MR | Zbl

[3] L.P. Tepoyan, “On a Degenerate Differential-Operator Equation of Higher Order”, Izv. NAN Armenii. Matematika, 34:5 (1999), 48–56 | MR | Zbl

[4] L. P. Tepoyan, Kalvand Daryoush, “Neumann problem for fourth order degenerate ordinary differential equations”, Proceedings of the YSU. Phys. and Mathem. Sciences, 2010, no. 1, 22–26 | Zbl

[5] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations, Electron. J. Diff. Eqns / Monograph-01, 1994 | MR

[6] A.A. Dezin, Partial Differential Equations (An Introduction to a General Theory of Linear Boundary Value Problems), Springer, 1987 | MR | Zbl