Boundary value problem for the pseudoparabolic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 16-21
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper the boundary value problem for the Sobolev type equation
$$
\begin{cases}
\dfrac{\partial}{\partial t}L(u(t,x))+M(u(t,x))=f(t,x),\quad t>0,~~~x=(x_1,\ldots,x_n)\in \Omega\subset\mathbb{R}^n,\\
u\big|_{\partial\Omega}=0,\\
(Lu)(0,x)=g(z),\quad x\in\Omega,\end{cases}
$$
is considered, where $L$ and $M$ are second-order differential operators. It is proved that under some conditions this problem in the corresponding space has the unique solution.
Keywords:
monotone and radial operators.
Mots-clés : Sobolev type equations, pseudoparabolic equations
Mots-clés : Sobolev type equations, pseudoparabolic equations
@article{UZERU_2010_1_a2,
author = {S. Ghorbanian},
title = {Boundary value problem for the pseudoparabolic equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {16--21},
publisher = {mathdoc},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/}
}
TY - JOUR AU - S. Ghorbanian TI - Boundary value problem for the pseudoparabolic equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 16 EP - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/ LA - en ID - UZERU_2010_1_a2 ER -
S. Ghorbanian. Boundary value problem for the pseudoparabolic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 16-21. http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/