Boundary value problem for the pseudoparabolic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the boundary value problem for the Sobolev type equation $$ \begin{cases} \dfrac{\partial}{\partial t}L(u(t,x))+M(u(t,x))=f(t,x),\quad t>0,~~~x=(x_1,\ldots,x_n)\in \Omega\subset\mathbb{R}^n,\\ u\big|_{\partial\Omega}=0,\\ (Lu)(0,x)=g(z),\quad x\in\Omega,\end{cases} $$ is considered, where $L$ and $M$ are second-order differential operators. It is proved that under some conditions this problem in the corresponding space has the unique solution.
Keywords: monotone and radial operators.
Mots-clés : Sobolev type equations, pseudoparabolic equations
@article{UZERU_2010_1_a2,
     author = {S. Ghorbanian},
     title = {Boundary value problem for the pseudoparabolic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--21},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/}
}
TY  - JOUR
AU  - S. Ghorbanian
TI  - Boundary value problem for the pseudoparabolic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 16
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/
LA  - en
ID  - UZERU_2010_1_a2
ER  - 
%0 Journal Article
%A S. Ghorbanian
%T Boundary value problem for the pseudoparabolic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 16-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/
%G en
%F UZERU_2010_1_a2
S. Ghorbanian. Boundary value problem for the pseudoparabolic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 16-21. http://geodesic.mathdoc.fr/item/UZERU_2010_1_a2/

[1] R. A. Aleksandryan, “Spectral properties of operators arising from systems of differential equations of Sobolev type”, Tr. Mosk. Mat. Obs., 9, 1960, 455–505 (in Russian) | MR | Zbl

[2] G.S. Hakobyan, R.L. Shakhbaghyan, “Mixed boundary value problem for a high-order quasilinear degenerate evolutionary equations”, Izv. NAN Armenii. Matematika 1996, 31:1, 5–29 (in Russian) | MR

[3] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49, 1997 | MR | Zbl

[4] Kh. Gaevskii, K. Greger, K. Zakharis, Nonlinear Operator Equations and Operator Differential Equations, Mir, M., 1978 (in Russian) | MR

[5] H.A. Mamikonyan, “Initial boundary value problem for Sobolev type nonlinear equations”, Uchenie zapiski EGU, 2006, no. 2, 33–40 (in Russian)