Different stability of RNA secondary and tertiary structures
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 55-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this article is to clarify contribution of the chain entropy in stability of RNA secondary and tertiary structures. The Hamiltonian of the model includes relevant interactions explicitly. We show that different stability of secondary and tertiary structures governed by chain entropy rather than energy of interaction.
Keywords: folding, entropy.
Mots-clés : RNA
@article{UZERU_2009_3_a8,
     author = {E. Sh. Mamasakhlisov},
     title = {Different stability of {RNA} secondary and tertiary structures},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {55--57},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a8/}
}
TY  - JOUR
AU  - E. Sh. Mamasakhlisov
TI  - Different stability of RNA secondary and tertiary structures
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 55
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a8/
LA  - en
ID  - UZERU_2009_3_a8
ER  - 
%0 Journal Article
%A E. Sh. Mamasakhlisov
%T Different stability of RNA secondary and tertiary structures
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 55-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_3_a8/
%G en
%F UZERU_2009_3_a8
E. Sh. Mamasakhlisov. Different stability of RNA secondary and tertiary structures. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 55-57. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a8/

[1] J.M. Burke et al., Catalytic RNA, eds. Eckstein F. and Lilley D.M., Springer-Verlag, Berlin, 1996, 130 pp.

[2] R. Bundschuh, T. Hwa, “Statistical mechanics of secondary structures formed by random RNA sequences”, Phys. Rev. E, 65 (2002), 031903 | DOI

[3] M. Lässig, K.J. Wiese, “Freezing of Random RNA”, Phys. Rev. Lett., 96 (2006), 228101 | DOI

[4] M. Müller, “Statistical physics of RNA folding”, Phys. Rev. E, 67 (2003), 021914 | DOI | MR

[5] Y.Sh. Mamasakhlisov, S. Hayryan, V.F. Morozov, C.-K. Hu, “RNA folding in the presence of counterions”, Phys. Rev. E, 75 (2007), 061907 | DOI

[6] R. Shiman, D.E. Draper, “Stabilization of RNA tertiary structure by monovalent cations”, J. Mol. Biol., 302 (2000), 79–91 | DOI

[7] A.R. Khokhlov, K.A. Khachaturian, “On the theory of weakly charged polyelectrolytes”, Polymer, 23 (1982), 1742–1750 | DOI

[8] M. Ulner, B. Jönsson, “A Monte Carlo Study of Titrating Polyelectrolytes in the Presence of Salt”, Macromolecules, 29 (1996), 6645–6655 | DOI

[9] M. Mezard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore, 1987 | MR | Zbl

[10] V.S. Pande, A.Y. Grosberg, T. Tanaka, “Heteropolymer freezing and design: Towards physical models of protein folding”, Rev. Mod. Phys., 72 (2000), 259–314 | DOI

[11] E.I. Shakhnovich, A.M. Gutin, “Implications of thermodynamics of protein folding for evolution of primary sequences”, Nature, 346 (1990), 773–775 | DOI