On multiple intersection point of homogeneous curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we describe the polynomial space, corresponding to the multiple intersection point of two curves that are given as products of correspondingly $m$ and $n$ different lines, passing through that point. The main result gives the basis of that space, using polynomials, which correspond to the derivatives with respect to the directions of those lines.
Keywords: algebraic curves, intersection multiplicity.
@article{UZERU_2009_3_a4,
     author = {G. S. Avagyan},
     title = {On multiple intersection point of homogeneous curves},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {32--36},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a4/}
}
TY  - JOUR
AU  - G. S. Avagyan
TI  - On multiple intersection point of homogeneous curves
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 32
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a4/
LA  - en
ID  - UZERU_2009_3_a4
ER  - 
%0 Journal Article
%A G. S. Avagyan
%T On multiple intersection point of homogeneous curves
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 32-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_3_a4/
%G en
%F UZERU_2009_3_a4
G. S. Avagyan. On multiple intersection point of homogeneous curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 32-36. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a4/

[2] H. Hakopian, “The Multivariate Fundamental Theorem of Algebra, Bezout’s Theorem and Nullstellensatz”, Approximation Theory, eds. D.K. Dimitrov et al., Marin Drinov Acad. Publ. House, Sofia, 2004, 73–97 | MR

[3] R.J. Walker, Algebraic Curves, Springer, 1978 | MR | Zbl