Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2009_3_a3, author = {A. R. Khajkhnidi}, title = {On the number of served customers in $BMAP(t) | G |\infty$ model}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {26--31}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a3/} }
TY - JOUR AU - A. R. Khajkhnidi TI - On the number of served customers in $BMAP(t) | G |\infty$ model JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2009 SP - 26 EP - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a3/ LA - en ID - UZERU_2009_3_a3 ER -
A. R. Khajkhnidi. On the number of served customers in $BMAP(t) | G |\infty$ model. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 26-31. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a3/
[1] H.C. Tijms, A First Course in Stochastic Models, John Wily $\$ Sons, 2003, 480 pp. | MR | Zbl
[2] A.K. Erlang, “Solution of some problems in the theory of significance in automatic telephone exchanges”, The Post Office Electrical Engineers’ Journal, 10 (1918), 189–197
[3] Theory Probab. Appl., 2:1 (1957), 104–112 | DOI | MR | Zbl
[4] B.V. Gnedenko, I.N. Kovalenko, Introduction of Theory of Queues, Nauka, M., 1987 (in Russian) | MR
[5] Kh.V. Kerobyan, “Resource Sharing Performance Models for Estimating Internet Service Characteristic in View of Restrictions on Buffer Capacity”, Int. NATO Conf. DF for SM, Kluwer Academic Pb., 2003
[6] T.A. Grigorian, The Development and Study of Internet-Service Proecting Models for Enter to Datebuses, PhD Thesis, Yer., 2004 (in Russian)
[7] I.A. Ushakov (ed.), The Relabily of Technical Systems, Radio i Sviaz, 1985, 608 pp. (in Russian)
[8] K. Leung, W.A. Massey, W. Whitt, “Traffic models for wireless communication networks”, Journal on Selected Areas in Communications, 12 (1994), 1353–1364 | DOI
[9] W.A. Massey, “The Analysis of Queues with Time-Varying Rates for Telecommunication Models”, Telecommunication Systems, 21:2–4 (2002), 173–204 | DOI
[10] M.F. Neuts, “A versatile Markovian point process”, J. Appl. Probab., 16 (1979), 764–779 | DOI | MR
[11] D.M. Lucantoni, “New Results for the Single Server Queue with a Batch Markovian Arrival Process”, Commun. Statist. Stochastic Models, 7:1 (1991), 1–46 | DOI | MR | Zbl
[12] V. Paxson, S. Floyd, “Wide-area Traffic: The Failure of Poisson Modeling”, Proc. Of the ACM94, 257–268
[13] K. Park, G. Kim, M. Crovella, “On the Effect of Traffic Self-Si,ilarity on Network Performance”, Proc. SPIE Int’l. Conf. Perf. and Control, 1997, 296–310
[14] S. Eick, W.A. Massey, W. Whitt, “Infinite-server queues with sinusoidal arrival rates”, Management Science, 39 (1993), 241–252 | DOI | Zbl
[15] S. Eick, W.A. Massey, W. Whitt, “The physics of the $M(t)/G/|\infty$ queue”, Operations Research, 41 (1993), 400–408 | DOI | MR
[16] J. Keilson, L.D. Servi, Networks of Non-homogenous $M|G|\infty$ Systems, GTE Laboratories, Waltham, MA, 1989
[17] L. Breuer, Spatial Queues, Ph.D. Thesis, University of Trier, Germany, 2000
[18] H. Masuyama, Studies on Algorithmic Analysis of Queues with Batch Markovian Arrival Streams, Ph.D. Thesis, Kyoto University, 2003, 146 pp.
[19] D. Baum, V. Kalashnikov, “Spatial No–Waiting Stations with Moving Customers. Queueing Systems”, Queueing Systems, 46 (2004), 231–247 | DOI | MR | Zbl
[20] V. Ramaswami, M.F. Neuts, “Some explicit formulas and computational methods for infinite-server queues with phase-type arrivals”, Journal of Applied Probability, 1980, no. 17, 498–514 | DOI | MR | Zbl
[21] B. L. Nelson, R. M. Taaffe, “The $Pht/\infty$ Queueing System: Part I: The Single Node”, Informs Journal on Computing, 16:3 (2004), 266–274 | DOI | MR | Zbl
[22] V.F. Matveev, V.G. Ushakov, Systems of Queues, 1984, MGU, M., 239 pp. (in Russian)