Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 10-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Dirichlet problem in a bounded domain $Q\subset R_n$ $\partial Q\in C^1$, for the second order linear elliptic equation $$-\sum_{i,j=1}^n(a_{ij}(x)U_{x_i})_{x_j}+\sum_{i=1}^nb_i(x)u_{x_i}-\sum_{i=1^n}c_i(x)u)_{x_i}+d(x)u=f(x)-divF(x), \ x\in Q, \ u|_{\partial Q}=u_0.$$For the solution we prove boundedness of the Dirichlet integral with the weight $r(x)$, i.e. the function $r(x)| \nabla u(x)|^2$ is integrable over $Q$ , where $r(x) $ is the distance from a point $x\in Q$ to the boundary $\partial Q$.
Keywords:
Dirichlet problem, Dirichlet's integral.
Mots-clés : elliptic equation
Mots-clés : elliptic equation
@article{UZERU_2009_3_a1,
author = {V. Zh. Dumanyan},
title = {Dirichlet weight integral estimation to {Dirichlet} problem solution for the general second order elliptic equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {10--21},
publisher = {mathdoc},
number = {3},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/}
}
TY - JOUR AU - V. Zh. Dumanyan TI - Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2009 SP - 10 EP - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/ LA - en ID - UZERU_2009_3_a1 ER -
%0 Journal Article %A V. Zh. Dumanyan %T Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2009 %P 10-21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/ %G en %F UZERU_2009_3_a1
V. Zh. Dumanyan. Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 10-21. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/