Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 10-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem in a bounded domain $Q\subset R_n$ $\partial Q\in C^1$, for the second order linear elliptic equation $$-\sum_{i,j=1}^n(a_{ij}(x)U_{x_i})_{x_j}+\sum_{i=1}^nb_i(x)u_{x_i}-\sum_{i=1^n}c_i(x)u)_{x_i}+d(x)u=f(x)-divF(x), \ x\in Q, \ u|_{\partial Q}=u_0.$$For the solution we prove boundedness of the Dirichlet integral with the weight $r(x)$, i.e. the function $r(x)| \nabla u(x)|^2$ is integrable over $Q$ , where $r(x) $ is the distance from a point $x\in Q$ to the boundary $\partial Q$.
Keywords: Dirichlet problem, Dirichlet's integral.
Mots-clés : elliptic equation
@article{UZERU_2009_3_a1,
     author = {V. Zh. Dumanyan},
     title = {Dirichlet weight integral estimation to {Dirichlet} problem solution for the general second order elliptic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {10--21},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/}
}
TY  - JOUR
AU  - V. Zh. Dumanyan
TI  - Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 10
EP  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/
LA  - en
ID  - UZERU_2009_3_a1
ER  - 
%0 Journal Article
%A V. Zh. Dumanyan
%T Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 10-21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/
%G en
%F UZERU_2009_3_a1
V. Zh. Dumanyan. Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 10-21. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/

[1] Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[2] Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[3] V.Zh. Dumanyan, “On the behaviour near the boundary of solutions of the Dirichlet problem for the second-order elliptic equation”, DAN RAN, 386:6 (2002), 735–737 (in Russian) | MR | Zbl

[4] V.Zh. Dumanyan, “On the behaviour near the boundary of solutions of the Dirichlet problem for elliptic equations”, Note di Matematica, 21:2 (2002), 99–118 | MR

[5] V.Zh. Dumanyan, “On the boundedness of Dirichlet's weight integral for solution of the Dirichlet problem for the second order elliptic equation”, Doklady NAN RA, 108:1 (2008), 45–49 (in Russian) | MR

[6] Dumanyan V.Zh., “On the near the boundary behaviour of solution of the Dirichlet problem for the general second order elliptic equation”, Doklady NAN RA, 108:2 (2008), 110–116 (in Russian) | MR

[7] Math. USSR-Sb., 30:2 (1976), 143–166 | DOI | MR | Zbl

[8] Differentsial’nye Uravneniya, 12 (1976), 1320–1329 | MR | Zbl

[9] Mir, M., 1978 | MR

[10] Math. USSR-Sb., 47:1 (1984), 43–72 | DOI | MR | MR | Zbl | Zbl

[11] Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl

[12] V. P. Mikhailov, “Boundary properties of solutions of elliptic equations”, Mat. Zametki, 27:1 (1980), 137–145 (in Russian) | MR | Zbl

[13] A.K. Gushchin, V.P. Mikhailov, “On Boundary Values of Solutions of Elliptic Equations”, Generalized Functions and Their Applications in Mathematical Physics, Proc. Internat. Conf. (Moscow, 1980), ed. V.S. Vladimirov, Vychisl. Tsentr Akad. Nauk SSSR, M., 1981, 189–205 (in Russian)

[14] Proc. Steklov Inst. Math., 175 (1988), 65–105 | MR | Zbl

[15] V.Zh. Dumanyan, “On the estimation of for solutions of second order elliptic equations”, Uch. Zapiski EGU (Proceedings of the YSU), 2008, no. 2, 145–147 (in Russian) | MR