Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 10-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem in a bounded domain $Q\subset R_n$ $\partial Q\in C^1$, for the second order linear elliptic equation $$-\sum_{i,j=1}^n(a_{ij}(x)U_{x_i})_{x_j}+\sum_{i=1}^nb_i(x)u_{x_i}-\sum_{i=1^n}c_i(x)u)_{x_i}+d(x)u=f(x)-divF(x), \ x\in Q, \ u|_{\partial Q}=u_0.$$For the solution we prove boundedness of the Dirichlet integral with the weight $r(x)$, i.e. the function $r(x)| \nabla u(x)|^2$ is integrable over $Q$ , where $r(x) $ is the distance from a point $x\in Q$ to the boundary $\partial Q$.
Keywords: Dirichlet problem, Dirichlet's integral.
Mots-clés : elliptic equation
@article{UZERU_2009_3_a1,
     author = {V. Zh. Dumanyan},
     title = {Dirichlet weight integral estimation to {Dirichlet} problem solution for the general second order elliptic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {10--21},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/}
}
TY  - JOUR
AU  - V. Zh. Dumanyan
TI  - Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 10
EP  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/
LA  - en
ID  - UZERU_2009_3_a1
ER  - 
%0 Journal Article
%A V. Zh. Dumanyan
%T Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 10-21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/
%G en
%F UZERU_2009_3_a1
V. Zh. Dumanyan. Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 10-21. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a1/