Pleijel type identities
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 32-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper generalizations of classical Pleijel identities are obtained. We refer these identities as Pleijel type identities. Particular cases of these identities are proved in [1], [3] and [5].
Keywords: bounded convex domains, combinatorial decompositions, combinatorial algorithm.
@article{UZERU_2009_2_a5,
     author = {N. G. Aharonyan},
     title = {Pleijel type identities},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {32--37},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/}
}
TY  - JOUR
AU  - N. G. Aharonyan
TI  - Pleijel type identities
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 32
EP  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/
LA  - en
ID  - UZERU_2009_2_a5
ER  - 
%0 Journal Article
%A N. G. Aharonyan
%T Pleijel type identities
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 32-37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/
%G en
%F UZERU_2009_2_a5
N. G. Aharonyan. Pleijel type identities. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 32-37. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/

[1] R.V. Ambartzumian, Combinatorial Integral Geometry with Applications to Mathematical Stereology, John Wiley $\$ Sons, Chichester, 1982 | MR | Zbl

[2] R.V. Ambartzumian, Factorization Calculus and Geometric Probability, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[3] R.V. Ambartzumian, Combinatorial Principles in Stochastic Geometry, Collection of papers, NAS RA press, Yer., 1980 | MR

[4] N.G. Aharonyan, “Generalized Pleijel identity”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 43:5 (2008), 257–264 | DOI | MR | Zbl

[5] R.V. Ambartzumian, “Integration of combinatorial decompositions in the presence of collinearities”, Journal of Contemporary Mathematical Analysis (Armenian Academy of siences), 43:1 (2008), 3–20 | DOI | MR | Zbl

[6] R.V. Ambartzumian, “Tomography models of random convex polygons”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 44:1 (2009), 25–35 | DOI | MR

[7] N.G. Aharonyan, V.K. Ohanyan, “Two comments on the paper by R. V.Ambartzumian on desintegration”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 36:4, 40–50 | MR