Pleijel type identities
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 32-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper generalizations of classical Pleijel identities are obtained. We refer these identities as Pleijel type identities. Particular cases of these identities are proved in [1], [3] and [5].
Keywords: bounded convex domains, combinatorial decompositions, combinatorial algorithm.
@article{UZERU_2009_2_a5,
     author = {N. G. Aharonyan},
     title = {Pleijel type identities},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {32--37},
     year = {2009},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/}
}
TY  - JOUR
AU  - N. G. Aharonyan
TI  - Pleijel type identities
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 32
EP  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/
LA  - en
ID  - UZERU_2009_2_a5
ER  - 
%0 Journal Article
%A N. G. Aharonyan
%T Pleijel type identities
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 32-37
%N 2
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/
%G en
%F UZERU_2009_2_a5
N. G. Aharonyan. Pleijel type identities. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 32-37. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a5/

[1] R.V. Ambartzumian, Combinatorial Integral Geometry with Applications to Mathematical Stereology, John Wiley $\$ Sons, Chichester, 1982 | MR | Zbl

[2] R.V. Ambartzumian, Factorization Calculus and Geometric Probability, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[3] R.V. Ambartzumian, Combinatorial Principles in Stochastic Geometry, Collection of papers, NAS RA press, Yer., 1980 | MR

[4] N.G. Aharonyan, “Generalized Pleijel identity”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 43:5 (2008), 257–264 | DOI | MR | Zbl

[5] R.V. Ambartzumian, “Integration of combinatorial decompositions in the presence of collinearities”, Journal of Contemporary Mathematical Analysis (Armenian Academy of siences), 43:1 (2008), 3–20 | DOI | MR | Zbl

[6] R.V. Ambartzumian, “Tomography models of random convex polygons”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 44:1 (2009), 25–35 | DOI | MR

[7] N.G. Aharonyan, V.K. Ohanyan, “Two comments on the paper by R. V.Ambartzumian on desintegration”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 36:4, 40–50 | MR