On functions semi-analytical in the polydisk
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper the class of semi-analytical functions in the polydisk $ U^n\subset\mathbb{C}^n$ is introduced. This class is an extension of the set of holomorphic functions. For $ n =1$ the concept of semi-analyticity coincides with analyticity. The Dirichlet problem with values given on the distinguished boundary of the polydisk always has a solution in the set of real parts of semi-analytical functions. Therefore, to investigate semi-analytical functions one can apply the potential theory methods, like one does it for the one-dimensional case. In the present paper the Schwarz type integral representation for the above-mentioned functions is obtained.
Keywords:
polydisk, $n$-harmonic function, pluriharmonic function, the Schwarz formula.
@article{UZERU_2009_2_a0,
author = {A. I. Petrosyan and N. T. Gapoyan},
title = {On functions semi-analytical in the polydisk},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--7},
year = {2009},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/}
}
TY - JOUR AU - A. I. Petrosyan AU - N. T. Gapoyan TI - On functions semi-analytical in the polydisk JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2009 SP - 3 EP - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/ LA - en ID - UZERU_2009_2_a0 ER -
A. I. Petrosyan; N. T. Gapoyan. On functions semi-analytical in the polydisk. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/
[1] S. Bergman, “The Kernel Function and Conformal Mappings”, Mathematical Surveys, Amer. Math. Soc., 1970, 214–218 | MR
[2] A.I. Petrosyan, Izv. AN Arm. SSR. Mat., 9:1 (1974), 3–13 (in Russian) | MR
[3] A.I. Petrosyan, Mathematics in Higher School, 3:2 (2007), 37–43 (in Armenian)
[4] B.V. Shabat, Introduction to Complex Analysis, v. 2, Nauka, M., 1985 (in Russian) | MR