On functions semi-analytical in the polydisk
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the class of semi-analytical functions in the polydisk $ U^n\subset\mathbb{C}^n$ is introduced. This class is an extension of the set of holomorphic functions. For $ n =1$ the concept of semi-analyticity coincides with analyticity. The Dirichlet problem with values given on the distinguished boundary of the polydisk always has a solution in the set of real parts of semi-analytical functions. Therefore, to investigate semi-analytical functions one can apply the potential theory methods, like one does it for the one-dimensional case. In the present paper the Schwarz type integral representation for the above-mentioned functions is obtained.
Keywords: polydisk, $n$-harmonic function, pluriharmonic function, the Schwarz formula.
@article{UZERU_2009_2_a0,
     author = {A. I. Petrosyan and N. T. Gapoyan},
     title = {On functions semi-analytical in the polydisk},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/}
}
TY  - JOUR
AU  - A. I. Petrosyan
AU  - N. T. Gapoyan
TI  - On functions semi-analytical in the polydisk
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 3
EP  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/
LA  - en
ID  - UZERU_2009_2_a0
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%A N. T. Gapoyan
%T On functions semi-analytical in the polydisk
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 3-7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/
%G en
%F UZERU_2009_2_a0
A. I. Petrosyan; N. T. Gapoyan. On functions semi-analytical in the polydisk. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a0/

[1] S. Bergman, “The Kernel Function and Conformal Mappings”, Mathematical Surveys, Amer. Math. Soc., 1970, 214–218 | MR

[2] A.I. Petrosyan, Izv. AN Arm. SSR. Mat., 9:1 (1974), 3–13 (in Russian) | MR

[3] A.I. Petrosyan, Mathematics in Higher School, 3:2 (2007), 37–43 (in Armenian)

[4] B.V. Shabat, Introduction to Complex Analysis, v. 2, Nauka, M., 1985 (in Russian) | MR