Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2009_1_a11, author = {S. E. Mkrtchyan}, title = {On uniqueness of holomorphic and bounded outside the closed logarithmic sector functions representable by lacunary power series}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {61--63}, publisher = {mathdoc}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2009_1_a11/} }
TY - JOUR AU - S. E. Mkrtchyan TI - On uniqueness of holomorphic and bounded outside the closed logarithmic sector functions representable by lacunary power series JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2009 SP - 61 EP - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2009_1_a11/ LA - en ID - UZERU_2009_1_a11 ER -
%0 Journal Article %A S. E. Mkrtchyan %T On uniqueness of holomorphic and bounded outside the closed logarithmic sector functions representable by lacunary power series %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2009 %P 61-63 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2009_1_a11/ %G en %F UZERU_2009_1_a11
S. E. Mkrtchyan. On uniqueness of holomorphic and bounded outside the closed logarithmic sector functions representable by lacunary power series. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 61-63. http://geodesic.mathdoc.fr/item/UZERU_2009_1_a11/
[1] L. Freric, V.A. Martirosian, J. Müller, “On the existence of lacunary power series analytically continuable and bounded outside sectors”, Comp. var. elliptic equation, 54:7 (2009), 669–676 | DOI | MR | Zbl
[2] Math. USSR-Sb., 52:1 (1985), 21–39 | DOI | MR | Zbl
[3] L. Bieberbach, Analytische Fortsetzung, Spriger, Berlin, 1955 | MR | Zbl
[4] V.A. Martirosian, “On entire functions bounded on a closed angle and representable by power series with gaps or real coefficients”, Dokl. Akad. Nauk SSSR, 1986, no. 6, 1301–1304 (in Russian) | MR
[5] R.P. Boas, Entire functions, Academic Press, New York, 1954 | MR | Zbl
[6] W.H.J. Fuchs, “A Generalization of Carlson's Theorem”, J.London Math. Soc., 1946, 106–110 | DOI | MR | Zbl