On the convergence of Fourier–Laplace series
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we prove the following theorem. For any $\varepsilon>0$ there exists a measurable set $G\subset S^3$ with measure $mes G>4\pi-\varepsilon$, such that for each $f(x)\in L^1(S^3)$ there is a function $g(x)\in L^1(S^3)$, coinciding with $f(x)$ on $G$ with the following properties. Its Fourier–Laplace series converges to $g(x)$ in metrics $L^1(S^3)$ and the inequality holds $\displaystyle\sup_N||\sum_{n=1}^N Y_n[g,(\theta, \varphi)]||_{L^1(S^3)}\ll 3||g||_{L^1(S^3)}\leq12||f||$.
Keywords: spherical harmonics
Mots-clés : Legendre polynomials, convergence of Fourier series.
@article{UZERU_2009_1_a0,
     author = {A. A. Sargsyan},
     title = {On the convergence of {Fourier{\textendash}Laplace} series},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_1_a0/}
}
TY  - JOUR
AU  - A. A. Sargsyan
TI  - On the convergence of Fourier–Laplace series
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 3
EP  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_1_a0/
LA  - en
ID  - UZERU_2009_1_a0
ER  - 
%0 Journal Article
%A A. A. Sargsyan
%T On the convergence of Fourier–Laplace series
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 3-7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_1_a0/
%G en
%F UZERU_2009_1_a0
A. A. Sargsyan. On the convergence of Fourier–Laplace series. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2009_1_a0/