Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2008_1_a9, author = {A. L. Aslanyan}, title = {The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {64--67}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/} }
TY - JOUR AU - A. L. Aslanyan TI - The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2008 SP - 64 EP - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/ LA - ru ID - UZERU_2008_1_a9 ER -
%0 Journal Article %A A. L. Aslanyan %T The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2008 %P 64-67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/ %G ru %F UZERU_2008_1_a9
A. L. Aslanyan. The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 64-67. http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/
[1] P. Pilot, Y. Boiko, T.V. Galstian, “Near-IR ($800$ to $855~~nm$) sensitive holographic photopolymer dispersed liquid crystal materials”, Liquid Crystal Materials, Devices, and Applications VII, Proceedings of SPIE, 3635, 1999, 143–150 | DOI
[2] P. Nagtegaele, T.V. Galstian, “Holographic characterization of near infra red photopolymerizable materials”, Synthetic Metals, 127 (2002), 85–87 | DOI
[3] S. Gallego, C. Neipp, M. Ortuno, A. Beléndez, I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than $90\%$”, J. of Mod. Opt., 51:4 (2004), 491–503 | DOI
[4] R. Sutherland, V. Tondiglia, L. Natarajan, “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Appl. Phys. Lett., 64:9 (1994), 1074–1076 | DOI
[5] G. Zhao, P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials”, J. of Mod. Opt., 41:10 (1994), 1929–1939 | DOI
[6] I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth”, J. Mod. Opt., 45:7 (1998), 1465–1477 | DOI
[7] J.T. Sheridan, T.O. Neill, J.V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model”, J. Opt. Soc. Am. B, 21:8 (2004), 1443–1451 | DOI
[8] R. Akopyan, A. Aslanyan, A. Galstyan, “Zavisimost difraktsionnoi effektivnosti gologramm v fotopolimerizuemykh materialakh ot srednei intensivnosti zapisyvayuschego lazera”, Izv. NAN RA, 39:5 (2004), 327–330
[9] S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Belnédez, I. Pascual, J.V. Kelly, J.T. Sheridan, “$3D$ analysis of holographic photopolymers based memories”, Optics Express, 13:9 (2005), 3543–3557 | DOI