The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 64-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recording dynamics of holographic gratings in polymer dispersed liquid crystals for thick layers has been investigated in this work. In contrast to existing theoretical models, besides the diffusion of monomer molecules, it have been taken into account the diffusion of polymer molecules. Our analysis shows that the profile of recorded diffraction grating becomes fuzzy when considering the diffusion processes of polymer molecules.
@article{UZERU_2008_1_a9,
     author = {A. L. Aslanyan},
     title = {The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {64--67},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/}
}
TY  - JOUR
AU  - A. L. Aslanyan
TI  - The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 64
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/
LA  - ru
ID  - UZERU_2008_1_a9
ER  - 
%0 Journal Article
%A A. L. Aslanyan
%T The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 64-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/
%G ru
%F UZERU_2008_1_a9
A. L. Aslanyan. The diffusion model for thick diffraction gratings recorded in polymer dispersed lyquid crystals. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 64-67. http://geodesic.mathdoc.fr/item/UZERU_2008_1_a9/

[1] P. Pilot, Y. Boiko, T.V. Galstian, “Near-IR ($800$ to $855~~nm$) sensitive holographic photopolymer dispersed liquid crystal materials”, Liquid Crystal Materials, Devices, and Applications VII, Proceedings of SPIE, 3635, 1999, 143–150 | DOI

[2] P. Nagtegaele, T.V. Galstian, “Holographic characterization of near infra red photopolymerizable materials”, Synthetic Metals, 127 (2002), 85–87 | DOI

[3] S. Gallego, C. Neipp, M. Ortuno, A. Beléndez, I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than $90\%$”, J. of Mod. Opt., 51:4 (2004), 491–503 | DOI

[4] R. Sutherland, V. Tondiglia, L. Natarajan, “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Appl. Phys. Lett., 64:9 (1994), 1074–1076 | DOI

[5] G. Zhao, P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials”, J. of Mod. Opt., 41:10 (1994), 1929–1939 | DOI

[6] I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth”, J. Mod. Opt., 45:7 (1998), 1465–1477 | DOI

[7] J.T. Sheridan, T.O. Neill, J.V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model”, J. Opt. Soc. Am. B, 21:8 (2004), 1443–1451 | DOI

[8] R. Akopyan, A. Aslanyan, A. Galstyan, “Zavisimost difraktsionnoi effektivnosti gologramm v fotopolimerizuemykh materialakh ot srednei intensivnosti zapisyvayuschego lazera”, Izv. NAN RA, 39:5 (2004), 327–330

[9] S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Belnédez, I. Pascual, J.V. Kelly, J.T. Sheridan, “$3D$ analysis of holographic photopolymers based memories”, Optics Express, 13:9 (2005), 3543–3557 | DOI