Variational problem for some class of nonlinear pseudoparabolic operators
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 24-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a variational inequality is considered for pseudoparabolic operators. The theorem of existence and uniqueness of weak solution is proved. Also it’s proved the solvability of corresponding initial – boundary value problem and is shown it to be equivalent to variational inequality.
@article{UZERU_2008_1_a3,
     author = {A. A. Petrosyan},
     title = {Variational problem for some class of nonlinear pseudoparabolic operators},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {24--33},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_1_a3/}
}
TY  - JOUR
AU  - A. A. Petrosyan
TI  - Variational problem for some class of nonlinear pseudoparabolic operators
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 24
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_1_a3/
LA  - ru
ID  - UZERU_2008_1_a3
ER  - 
%0 Journal Article
%A A. A. Petrosyan
%T Variational problem for some class of nonlinear pseudoparabolic operators
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 24-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_1_a3/
%G ru
%F UZERU_2008_1_a3
A. A. Petrosyan. Variational problem for some class of nonlinear pseudoparabolic operators. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 24-33. http://geodesic.mathdoc.fr/item/UZERU_2008_1_a3/

[1] Zh.L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[2] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, 49, 1997 | MR | Zbl

[3] D. Kinderler, G. Stampakkya, Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[4] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[5] M. Ptashnyk, “Some Pseudoparabolic Variational Inequalities with Higher Derivatives”, Ukrainian Mathematical J., 54:1 (2002), 112–125 | DOI | MR | Zbl

[6] M. Ptashnyk, Nonlinear Pseudoparabolic Equations and Variational Inequalities, PhD Thesys, University of Heidelberg, Faculty of Mathematics and Informatics, 2004 | Zbl

[7] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR