Attractors of semigroups generated by an equation of Sobolev type
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 18-23

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the behavior of solutions of the following initial boundary value problem for a class of sobolev type equations is considered. $$A\left(\frac{\partial u}{\partial t}\right)+Bu=0,~u\Big|_{t=0}=u_0,~u\Big|_{\Sigma}=0 $$ where $A$ and $B$ are nonlinear operators of the following form: $$Au=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_j(x, u, \nabla u),~~Bu=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}b_j(x, u, \nabla u)$$ It’s proved that when functions $a_j(x, u, \nabla u)$ and $b_j(x, u, \nabla u)$ specify some conditions, the semigroup generated by this equation has attractor $\{S_t,~t \geq0\}$,, which is bounded in $W_2^1(\Omega)$.
@article{UZERU_2008_1_a2,
     author = {H. A. Mamikonyan},
     title = {Attractors of semigroups generated by an equation of {Sobolev} type},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--23},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/}
}
TY  - JOUR
AU  - H. A. Mamikonyan
TI  - Attractors of semigroups generated by an equation of Sobolev type
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 18
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/
LA  - ru
ID  - UZERU_2008_1_a2
ER  - 
%0 Journal Article
%A H. A. Mamikonyan
%T Attractors of semigroups generated by an equation of Sobolev type
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 18-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/
%G ru
%F UZERU_2008_1_a2
H. A. Mamikonyan. Attractors of semigroups generated by an equation of Sobolev type. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 18-23. http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/