Attractors of semigroups generated by an equation of Sobolev type
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 18-23
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the behavior of solutions of the following initial boundary value problem for a class of sobolev type equations is considered. $$A\left(\frac{\partial u}{\partial t}\right)+Bu=0,~u\Big|_{t=0}=u_0,~u\Big|_{\Sigma}=0 $$ where $A$ and $B$ are nonlinear operators of the following form: $$Au=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_j(x, u, \nabla u),~~Bu=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}b_j(x, u, \nabla u)$$ It’s proved that when functions $a_j(x, u, \nabla u)$ and $b_j(x, u, \nabla u)$ specify some conditions, the semigroup generated by this equation has attractor $\{S_t,~t \geq0\}$,, which is bounded in $W_2^1(\Omega)$.
@article{UZERU_2008_1_a2,
author = {H. A. Mamikonyan},
title = {Attractors of semigroups generated by an equation of {Sobolev} type},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {18--23},
publisher = {mathdoc},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/}
}
TY - JOUR AU - H. A. Mamikonyan TI - Attractors of semigroups generated by an equation of Sobolev type JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2008 SP - 18 EP - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/ LA - ru ID - UZERU_2008_1_a2 ER -
%0 Journal Article %A H. A. Mamikonyan %T Attractors of semigroups generated by an equation of Sobolev type %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2008 %P 18-23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/ %G ru %F UZERU_2008_1_a2
H. A. Mamikonyan. Attractors of semigroups generated by an equation of Sobolev type. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 18-23. http://geodesic.mathdoc.fr/item/UZERU_2008_1_a2/