Bending of rectangular plate in homogeneous distributed transversal loading
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 52-61
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work, on the basis of classical theory by Kirchhoff and S. A. Ambartsumyan’s specified theory problems on the bending of the plate are investigated. It is shown that in a case when the plate is leaned free from both sides, and on two others is leaned in a way of mobile connection of two parts, so, the accuracy of Kirchhoff's hypothesis is the neglecting of related thickness in comparison with unit. Formulas for deflection, moments, also for cutting forces are received. In case of narrow and wide plates the approaches for maximal deflection, cutting and generalized cutting forces are made.
@article{UZERU_2007_3_a6,
author = {Z. R. Baghdasaryan},
title = {Bending of rectangular plate in homogeneous distributed transversal loading},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {52--61},
year = {2007},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/}
}
TY - JOUR AU - Z. R. Baghdasaryan TI - Bending of rectangular plate in homogeneous distributed transversal loading JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2007 SP - 52 EP - 61 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/ LA - ru ID - UZERU_2007_3_a6 ER -
%0 Journal Article %A Z. R. Baghdasaryan %T Bending of rectangular plate in homogeneous distributed transversal loading %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2007 %P 52-61 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/ %G ru %F UZERU_2007_3_a6
Z. R. Baghdasaryan. Bending of rectangular plate in homogeneous distributed transversal loading. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 52-61. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/
[1] S. P. Timoshenko, S. Voinovskii-Kriger, Plastinki i obolochki, Fizmatgiz, M., 1963, 636 pp.
[2] V. V. Vasilev, “K diskussii po klassicheskoi teorii plastin”, Izv. RAN MTT, 1995, no. 4, 140–150
[3] S. A. Ambartsumyan, Teoriya anizotropnykh plastin, Nauka, M., 1987, 360 pp.
[4] M.V. Belubekyan, “Ob uravneniyakh teorii plastin, uchityvayuschikh poperechnye sdvigi”, Problemy mekhaniki tonkikh deformiruemykh tel, Gitutyun (Nauka), NAN RA, Er., 2002, 67–88
[5] E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates”, J. Applied Mech., 12 (1945), 69–77 | MR
[6] A. P. Melkonyan, A. A. Khachatryan, Fiz-mat. nauki, 18:1 (1965), 43–52