Bending of rectangular plate in homogeneous distributed transversal loading
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, on the basis of classical theory by Kirchhoff and S. A. Ambartsumyan’s specified theory problems on the bending of the plate are investigated. It is shown that in a case when the plate is leaned free from both sides, and on two others is leaned in a way of mobile connection of two parts, so, the accuracy of Kirchhoff's hypothesis is the neglecting of related thickness in comparison with unit. Formulas for deflection, moments, also for cutting forces are received. In case of narrow and wide plates the approaches for maximal deflection, cutting and generalized cutting forces are made.
@article{UZERU_2007_3_a6,
     author = {Z. R. Baghdasaryan},
     title = {Bending of rectangular plate in homogeneous distributed transversal loading},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {52--61},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/}
}
TY  - JOUR
AU  - Z. R. Baghdasaryan
TI  - Bending of rectangular plate in homogeneous distributed transversal loading
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 52
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/
LA  - ru
ID  - UZERU_2007_3_a6
ER  - 
%0 Journal Article
%A Z. R. Baghdasaryan
%T Bending of rectangular plate in homogeneous distributed transversal loading
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 52-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/
%G ru
%F UZERU_2007_3_a6
Z. R. Baghdasaryan. Bending of rectangular plate in homogeneous distributed transversal loading. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 52-61. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a6/

[1] S. P. Timoshenko, S. Voinovskii-Kriger, Plastinki i obolochki, Fizmatgiz, M., 1963, 636 pp.

[2] V. V. Vasilev, “K diskussii po klassicheskoi teorii plastin”, Izv. RAN MTT, 1995, no. 4, 140–150

[3] S. A. Ambartsumyan, Teoriya anizotropnykh plastin, Nauka, M., 1987, 360 pp.

[4] M.V. Belubekyan, “Ob uravneniyakh teorii plastin, uchityvayuschikh poperechnye sdvigi”, Problemy mekhaniki tonkikh deformiruemykh tel, Gitutyun (Nauka), NAN RA, Er., 2002, 67–88

[5] E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates”, J. Applied Mech., 12 (1945), 69–77 | MR

[6] A. P. Melkonyan, A. A. Khachatryan, Fiz-mat. nauki, 18:1 (1965), 43–52