The model $M G|1| \infty$ with unreliable server and «negative» customers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model $M G|1| \infty$ with unreliable server and «negative» customers, which destroy regular customers, is considered. Distribution number of customer, the busy period and the period of regeneration of model are investigated.
@article{UZERU_2007_3_a1,
     author = {Kh. V. Kerobyan},
     title = {The model $M G|1| \infty$ with unreliable server and {\guillemotleft}negative{\guillemotright} customers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {11--19},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/}
}
TY  - JOUR
AU  - Kh. V. Kerobyan
TI  - The model $M G|1| \infty$ with unreliable server and «negative» customers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 11
EP  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/
LA  - ru
ID  - UZERU_2007_3_a1
ER  - 
%0 Journal Article
%A Kh. V. Kerobyan
%T The model $M G|1| \infty$ with unreliable server and «negative» customers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 11-19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/
%G ru
%F UZERU_2007_3_a1
Kh. V. Kerobyan. The model $M G|1| \infty$ with unreliable server and «negative» customers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 11-19. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/

[1] J. R. Artalejo, “$G$-networks: A versatile approach for work removal in queueing networks”, European J. Oper. Res., 126 (2000), 233–249 | DOI | MR | Zbl

[2] D. Towsley, S.K. Tripathi, “A single server priority queue with server failures and queue flushing”, Operations Research Letters, 10 (1991), 353–362 | DOI | MR | Zbl

[3] A. Chen, E. Renshaw, “The $M/M/1$ queue with mass exodus and mass arrivals when empty”, J. of Applied Probability, 34 (1997), 192–207 | DOI | MR | Zbl

[4] Kh. V. Kerobyan, Kh. L. Vardanyan, N. G. Kostanyan, Proc. of Int. NATO Conf. «Data Fusion for Situation Monitoring», Kluwer Academic Publ., 2003

[5] E.G. Kyriakidis, A. Abakuks, “Optimal pest control through catastrophes”, J. of Applied Probability, 26 (1989), 873–879 | DOI | MR | Zbl

[6] X. Chao, “A queueing network model with catastrophes and product form solution”, Operations Research Letters, 18 (1995), 75–79 | DOI | MR | Zbl

[7] E. Gelenbe, G. Pujolle, Introduction to Queuing Networks, Wiley, Chichester, 1998, 326 pp. | MR

[8] P. P. Bocharov, V. M. Vishnevskii, “G-seti: razvitie teorii multiplikativnykh setei”, AiT, 2003, no. 5, 46–74

[9] A.N. Dudin, A.V. Karolik, “$\mathrm{BMAP/SM}/1$ queue with Markovian input of disasters and non-instantaneous recovery”, Perf. Eval., 45 (2001), 19–32 | DOI | Zbl

[10] Y. W. Shin, C. E. M. Pearce, “The $\mathrm{BMAP}/G/1$ vacation queue with queue-length dependent vacation schedule”, J. Austral. Math. Soc. Ser. B, 40 (1998), 207–221 | DOI | MR | Zbl

[11] G. Jain, K. Sigman, “A Pollaczek–Khintchine formula for $M/G/1$ queues with disasters”, J. of Applied Probability, 33 (1996), 1191–1200 | MR | Zbl

[12] Kh. V. Kerobyan, A. S. Tovmasyan, Trudy mezhdunarodnoi konf. «KNIT-2003», Er., 2003

[13] Kh. V. Kerobyan, Trudy mezhdunarodnoi konf. «Stat. fizika i dinamich. sist.» (Nor-Amberd, 2003)

[14] G.P. Klimov, Stokhasticheskie sistemy obsluzhivaniya, Nauka, M., 1966, 245 pp.

[15] B.V. Gnedenko, E.A. Danielyan i dr., Prioritetnye sistemy obsluzhivaniya, M., Izd-vo MGU, 448 pp.

[16] E. A. Danielyan, A. R. Simonyan, Vvedenie v teoriyu ocheredei, v. 1, Izd-vo RAU, Er., 2005, 198 pp.