Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2007_3_a1, author = {Kh. V. Kerobyan}, title = {The model $M G|1| \infty$ with unreliable server and {\guillemotleft}negative{\guillemotright} customers}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {11--19}, publisher = {mathdoc}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/} }
TY - JOUR AU - Kh. V. Kerobyan TI - The model $M G|1| \infty$ with unreliable server and «negative» customers JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2007 SP - 11 EP - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/ LA - ru ID - UZERU_2007_3_a1 ER -
%0 Journal Article %A Kh. V. Kerobyan %T The model $M G|1| \infty$ with unreliable server and «negative» customers %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2007 %P 11-19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/ %G ru %F UZERU_2007_3_a1
Kh. V. Kerobyan. The model $M G|1| \infty$ with unreliable server and «negative» customers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 11-19. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a1/
[1] J. R. Artalejo, “$G$-networks: A versatile approach for work removal in queueing networks”, European J. Oper. Res., 126 (2000), 233–249 | DOI | MR | Zbl
[2] D. Towsley, S.K. Tripathi, “A single server priority queue with server failures and queue flushing”, Operations Research Letters, 10 (1991), 353–362 | DOI | MR | Zbl
[3] A. Chen, E. Renshaw, “The $M/M/1$ queue with mass exodus and mass arrivals when empty”, J. of Applied Probability, 34 (1997), 192–207 | DOI | MR | Zbl
[4] Kh. V. Kerobyan, Kh. L. Vardanyan, N. G. Kostanyan, Proc. of Int. NATO Conf. «Data Fusion for Situation Monitoring», Kluwer Academic Publ., 2003
[5] E.G. Kyriakidis, A. Abakuks, “Optimal pest control through catastrophes”, J. of Applied Probability, 26 (1989), 873–879 | DOI | MR | Zbl
[6] X. Chao, “A queueing network model with catastrophes and product form solution”, Operations Research Letters, 18 (1995), 75–79 | DOI | MR | Zbl
[7] E. Gelenbe, G. Pujolle, Introduction to Queuing Networks, Wiley, Chichester, 1998, 326 pp. | MR
[8] P. P. Bocharov, V. M. Vishnevskii, “G-seti: razvitie teorii multiplikativnykh setei”, AiT, 2003, no. 5, 46–74
[9] A.N. Dudin, A.V. Karolik, “$\mathrm{BMAP/SM}/1$ queue with Markovian input of disasters and non-instantaneous recovery”, Perf. Eval., 45 (2001), 19–32 | DOI | Zbl
[10] Y. W. Shin, C. E. M. Pearce, “The $\mathrm{BMAP}/G/1$ vacation queue with queue-length dependent vacation schedule”, J. Austral. Math. Soc. Ser. B, 40 (1998), 207–221 | DOI | MR | Zbl
[11] G. Jain, K. Sigman, “A Pollaczek–Khintchine formula for $M/G/1$ queues with disasters”, J. of Applied Probability, 33 (1996), 1191–1200 | MR | Zbl
[12] Kh. V. Kerobyan, A. S. Tovmasyan, Trudy mezhdunarodnoi konf. «KNIT-2003», Er., 2003
[13] Kh. V. Kerobyan, Trudy mezhdunarodnoi konf. «Stat. fizika i dinamich. sist.» (Nor-Amberd, 2003)
[14] G.P. Klimov, Stokhasticheskie sistemy obsluzhivaniya, Nauka, M., 1966, 245 pp.
[15] B.V. Gnedenko, E.A. Danielyan i dr., Prioritetnye sistemy obsluzhivaniya, M., Izd-vo MGU, 448 pp.
[16] E. A. Danielyan, A. R. Simonyan, Vvedenie v teoriyu ocheredei, v. 1, Izd-vo RAU, Er., 2005, 198 pp.