Symmetric and asymmetric photofission modes $^{232}\mathrm{Th}$ at intermediate energies
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $^{232}\mathrm{Th}$ photofission yields were measured by using bremsstrahlung at end-point energy of $50$ and $3500 MeV$. The nuclear charge and mass distributions of the fission fragments were obtained. The multi-modal fission approach was used for calculation of the symmetric and asymmetric channels in the photofission. The behaviour of asymmetric-symmetric components and $^{232}\mathrm{Th}$ fissility by different channels were obtained at the intermediate energies.
@article{UZERU_2007_2_a9,
     author = {N. A. Demekhina and G. S. Karapetyan},
     title = {Symmetric and asymmetric photofission modes $^{232}\mathrm{Th}$ at intermediate energies},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {72--78},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_2_a9/}
}
TY  - JOUR
AU  - N. A. Demekhina
AU  - G. S. Karapetyan
TI  - Symmetric and asymmetric photofission modes $^{232}\mathrm{Th}$ at intermediate energies
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 72
EP  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_2_a9/
LA  - ru
ID  - UZERU_2007_2_a9
ER  - 
%0 Journal Article
%A N. A. Demekhina
%A G. S. Karapetyan
%T Symmetric and asymmetric photofission modes $^{232}\mathrm{Th}$ at intermediate energies
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 72-78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_2_a9/
%G ru
%F UZERU_2007_2_a9
N. A. Demekhina; G. S. Karapetyan. Symmetric and asymmetric photofission modes $^{232}\mathrm{Th}$ at intermediate energies. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 72-78. http://geodesic.mathdoc.fr/item/UZERU_2007_2_a9/

[1] U. Brosa, S. Grossman, A. Muller, “Four Channels in the Fission of $\mathrm{^{252}Cf}$”, Z. Naturforschung A, 41 (1986), 1341

[2] V.V. Pashkevich, Int. Conf. “Fiftieth Anniversary of Nuclear Fission” (Leningrad, 1989), 241

[3] T. Ohtsuki, Y. Hamajima, K. Sueki, H. Nakahara et al., “Systematic analysis of mass yield curves in low-energy fission of actinides”, Phys. Rev. C, 40 (1989), 2144 | DOI

[4] B. D. Wilkins, E. P. Steinberg, R. R. Chasman, “Scission-point model of nuclear fission based on deformed-shell effects”, Phys. Rev. C, 14 (1976), 1832 | DOI

[5] H. Kudo, H. Muramatsu, H. Nakahara et al. Fission fragment yields in the fission of, “$\mathrm{^{232} Th}$ by protons of energies $8$ to $22~ MeV$”, Phys. Rev. C, 25 (1982), 3011 | DOI

[6] M. Bernas, P. Armbruster, J. Benlliure et al., “Fission-residues produced in the spallation reaction $\mathrm{^{238} U + p}$ at $1 A GeV$”, Nucl. Phys. A, 725 (2003), 213 | DOI

[7] R.B. Firestone, Tables of Isotopes, 8 ed., eds. Frank Chu S.Y. Baglin C.M., Wiley Interscience, New York, 1996

[8] G.S. Karapetyan, “Opredelenie vykhodov fotoyadernykh reaktsii metodom navedennoi aktivnosti”, Uchenye zapiski EGU, 2006, no. 3, 31

[9] H. Kudo, M. Maruyama, M. Tanikawa et al., “Most probable charge of fission products in $24~ MeV$ proton induced fission of $\mathrm{^{238} U}$”, Phys. Rev. C, 57 (1998), 178 | DOI

[10] W. Younes, J.A. Becker, L.A. Bernstein et al., CP610 International Nuclear Conference, INPC, 2001

[11] Chien Chung, James J. Hogan, “Fission of $\mathrm{^{232} Th}$ at energies up to $90~ MeV$”, Phys. Rev. C, 24 (1981), 180 | DOI

[12] S.A. Karamian, J. Adam, A.G. Belov et al., “Light-mass yields and fine structure of mass distributions in $\mathrm{^{232} Th}$ photofission”, Phys. Rev. C, 62 (2000), 024601 | DOI

[13] F. Vives et al., “Investigation of the fission fragment properties of the reaction $\mathrm{^{238}U}(n,f) $ at incident neutron energies up to $5.8 ~MeV$”, Nucl. Phys. A, 662 (2000), 63 | DOI

[14] B. Schrøder, G. Nydahl, B. Forkman, “High-energy photofission in $\mathrm{^{238}U}$, $\mathrm{^{232}Th}$ and $\mathrm{^{209}Bi}$”, Nucl. Phys. A, 143 (1970), 449 | DOI

[15] V. M. Maslov, “Symmetric/asymmetric $\mathrm{^{238}U}$ neutron-induced fission up to $200~ MeV$”, Nucl. Phys. A, 717 (2003), 3 | DOI

[16] F. Croall, J.G. Cuninghame, “Fragment distributions in the fission of $\mathrm{^{232}Th}$ by protons of energies $13$ to $53 ~MeV$”, Nucl. Phys. A, 125 (1969), 402 | DOI

[17] A. Veyssiere, H. Beil, R. Bergere et al., “A study of the photofission and photoneutron processes in the giant dipole resonance of $\mathrm{^{232}Th}$, $\mathrm{^{238}U}$ and $\mathrm{^{237}Np}$”, Nucl. Phys. A, 199 (1973), 45 | DOI

[18] A. Deppman et al., “The CRISP package for intermediate- and high-energy photonuclear reactions”, Phys. G: Nucl. Part. Phys., 30 (2004), 1991 | DOI

[19] C. Cetina et al., “Photofission of heavy nuclei from $0.2$ to $3.8~ GeV$”, Phys. Rev. C, 65 (2002), 044622 | DOI