Analysis of network server with customers two-stage service
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2007), pp. 25-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work $\mathrm{MAP}|G|1$ type queue with MAP stream of customers and two-stage service is considered. The busy period duration, queue length and the probability of empty queue state in non-stationary situation are obtained. The analysis is done with the help of additional variable method.
@article{UZERU_2007_1_a2,
     author = {S. M. Dveidary},
     title = {Analysis of network server with customers two-stage service},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {25--31},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_1_a2/}
}
TY  - JOUR
AU  - S. M. Dveidary
TI  - Analysis of network server with customers two-stage service
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 25
EP  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_1_a2/
LA  - ru
ID  - UZERU_2007_1_a2
ER  - 
%0 Journal Article
%A S. M. Dveidary
%T Analysis of network server with customers two-stage service
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 25-31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_1_a2/
%G ru
%F UZERU_2007_1_a2
S. M. Dveidary. Analysis of network server with customers two-stage service. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2007), pp. 25-31. http://geodesic.mathdoc.fr/item/UZERU_2007_1_a2/

[1] T. A. Grigoryan, Razrabotka i issledovanie modelei proektirovaniya internet-servisa dlya dostupa k bazam dannykh, Avtoreferat dissertatsii na soiskanie stepeni KF-MN, Er., 2004

[2] M. Crovella, A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and Possible Causes”, IEEE/ACM Trans. on Networking, 5:6 (1997), 835–846 | DOI

[3] W. E. Leland, M. S. Taqqu, W. Willinger, V. Wilson, “On the self-similar nature of Ethernet traffic”, IEEE/ACM Trans. on Networking, 2:1 (1994), 1–15 | DOI | MR

[4] K. Park, G. Kim, M. Crovella, “On the Effect of Traffic Self-Similarity on Network Performance”, Proc. SPIE Int. Conf. Perf. Control of Network Sys., 1997, 296–310

[5] V. Paxson, S. Floyd, “Wide area traffic: the failure of Poisson modeling”, IEEE/ACM Trans. on Networking, 1995, no. 3, 226–244 | DOI

[6] M. F. Neuts, “Matrix-analytic methods in the theory of queues”, Advances in Queueing: Theory, Methods and Open Problems, 1995, 265–292 | MR | Zbl

[7] X. Chao, M. Miyazawa, M. Pinedo, Queueing Networks: Customers, Signals, and Product Form Solutions, Wiley, Chichester

[8] G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadelphia, 1999 | MR | Zbl

[9] D. M. Lucantoni, G. L. Choudhury, W. Whitt, “The transient BMAP/G/l queue”, Commun. Stat.-Stoch. Models, 10:1 (1994), 145–182 | DOI | MR | Zbl

[10] D. M. Lucantoni, M. F. Neuts, “Simpler proofs of some properties of the fundamental period of the MAP/G/1 queue”, J. Appl. Prob., 31 (1994), 235–243 | DOI | MR | Zbl

[11] B.D. Choi, G. U. Hwang, D.H. Han, “Supplementary Variable Method Applied To The MAP/G/1 Queueing System”, J. Austral. Math. Soc., Ser. B, 40 (1998), 86–96 | DOI | MR | Zbl