On the two types of antitumor compounds prohibiting strand separation under the double helix damage
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 46-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, besides antitumor drugs that form interstrand crosslink, DNA strand separation can be prohibited by compounds that induce a strong local stabilization of the double helix. Ruthenium and platinum complexes, examples of such compounds, are revealed in this work. A method of determination of concrete binding mechanism is proposed. The method is based upon comparison of results of computer modeling with experimental data on melting of DNA complexes with compounds under consideration.
@article{UZERU_2006_3_a6,
     author = {V. I. Vardanyan},
     title = {On the two types of antitumor compounds prohibiting strand separation under the double helix damage},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {46--50},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_3_a6/}
}
TY  - JOUR
AU  - V. I. Vardanyan
TI  - On the two types of antitumor compounds prohibiting strand separation under the double helix damage
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 46
EP  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_3_a6/
LA  - ru
ID  - UZERU_2006_3_a6
ER  - 
%0 Journal Article
%A V. I. Vardanyan
%T On the two types of antitumor compounds prohibiting strand separation under the double helix damage
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 46-50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_3_a6/
%G ru
%F UZERU_2006_3_a6
V. I. Vardanyan. On the two types of antitumor compounds prohibiting strand separation under the double helix damage. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 46-50. http://geodesic.mathdoc.fr/item/UZERU_2006_3_a6/

[1] Kohn K.W., “Beyond DNA Cross-Linking: History and Prospects of DNA-targeted Cancer Treatment”, Cancer Research, 56 (1996), 5533–5546

[2] Hofr C., Brabec V., “Thermal and Thermodynamic Properties of Duplex DNA Containing Site-specific Interstrand Cross-link of Antitumor Cisplatin or Its Clinically Ineffective Trans Isomer”, J. Biol. Chem., 276 (2001), 9655–9651 | DOI

[3] Takahara P.M., Rosenzwelg A.C., Frederick C.A., Lippard S.J., “Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin”, Nature, 377 (1995), 649–652 | DOI

[4] Van Boom S.S.G.E., Yang D., Reedijk J., Van der Marel G.A., Wang A.H.-J., “Structural Effect of Intra-strand Cisplatin-crosslink on Palindromic DNA Sequences”, J. Biomol. Struct. Dynam., 13 (1996), 989–998 | DOI

[5] Breslauer K.J., “Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions”, Methods in Enzymology, 258 (1995), 221–242. | DOI

[6] Dalyan Ye.B., Fridman A.S., Lando D.Y, Vardanyan V.I., Proceedings of the International Conference on unification and optimization of radiation monitoring on NPP location regions, Yerevan,, 2004,, 30–39

[7] Farrell N., Qu Y., Feng L., Van Houten B., “A comparison of chemical reactivity, cytotoxicity, interstrand crosslinking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogs”, Biochemistry, 29 (1990), 9522–9531 | DOI

[8] Grover N., Welch T.W., Fairley T.A., Cory M., Thorp H.H., Inorg. Chem., 33 (1994), 3544–3548 | DOI

[9] Kasparkova J., Novakova O., Vrana O., Farrell N., Brabec V., “Effect of Geometric Isomerism in Dinuclear Platinum Antitumor Complexes on DNA Interstrand Cross-Linking”, Biochemistry, 38 (1999), 10997–11005 | DOI