Axial-symmetric fields in the framework of Einstein theory (in Armenian)
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 59-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of approximate determination of parameters of stationary axial-symmetric fields of rotating configurations at the third and the forth approximation of angular velocity is proposed.
@article{UZERU_2006_2_a5,
     author = {H. H. Abazyan},
     title = {Axial-symmetric fields in the framework of {Einstein} theory (in {Armenian)}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {59--69},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {hy},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_2_a5/}
}
TY  - JOUR
AU  - H. H. Abazyan
TI  - Axial-symmetric fields in the framework of Einstein theory (in Armenian)
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 59
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_2_a5/
LA  - hy
ID  - UZERU_2006_2_a5
ER  - 
%0 Journal Article
%A H. H. Abazyan
%T Axial-symmetric fields in the framework of Einstein theory (in Armenian)
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 59-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_2_a5/
%G hy
%F UZERU_2006_2_a5
H. H. Abazyan. Axial-symmetric fields in the framework of Einstein theory (in Armenian). Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 59-69. http://geodesic.mathdoc.fr/item/UZERU_2006_2_a5/

[1] Butterworth E.M., Ipser J.R., “On the structure and stability of rapidly rotating fluid bodies in general relativity. I - The numerical method for computing structure and its application to uniformly rotating homogeneous bodies”, Astrophys. J., 204 (1976), 200–223 | DOI | MR

[2] Komatsu H., Erguchi Y., Hachlsu I., “Rapidly rotating general relativistic stars. I. Numerical method and its application to uniformly rotating polytropes”, Mon. Not. R. Astron. Soc., 237 (1989), 355 | DOI | Zbl

[3] Wu X., Müther H., Soffel M., Herold H., Ruder H., “A new equation of state for dense matter and fast rotating pulsars”, Astron. and Astrophys., 246 (1991), 411

[4] Bonazzola S., Gourgoulhon E., Salgado M., Mark J.A., “Axisymmetric rotating relativistic bodies: a new numerical approach for “exact” solutions”, Astron. and Astrophys., 278 (1993), 421 | MR

[5] Sedrakyan D.M., Chubaryan E.V., “Statsionarnye aksialno-simmetricheskoe gravitatsionnye polya”, Astrofizika, 4 (1968), 239

[6] Sedrakyan D.M., Chubaryan E.V., “O vnutrennem reshenii statsionarnykh aksialno-simmetricheskikh gravitatsionnykh polei”, Astrofizika, 4 (1968), 551

[7] Hartle J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Ar. J., 150 (1967), 1005

[8] Hartle J.B., Thorne K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Ar. J., 153 (1968), 807

[9] Hewish A., Bell S.J., Pilklngton J.D.H., Scott P.F., Collins R.A., “Observation of a Rapidly Pulsating Radio Source”, Nature, 217 (1968), 709 | DOI

[10] Gold T., “Rotating Neutron Stars as the Origin of the Pulsating Radio Sources”, Nature, 218 (1968), 731 | DOI | MR

[11] Gold T., “Rotating Neutron Stars and the Nature of Pulsars”, Nature, 221 (1969), 25 | DOI

[12] Chubarian E., Grigorian H., Poghosyan G., Blaschke D., “Deconfinement transition in rotating compact stars”, Astron. and Astrophys., 357 (2000), 968

[13] Skhtoryan E.M., Chubaryan E.V., Papoyan B.B., DAN Arm. SSR, 53 (1971), 84

[14] Hartle J.B., Sharp D., “Variational principle for the equilibrium of a relativistic, rotating star”, Ar. J., 147 (1967), 317

[15] Papapetrou A., “Einstein’s theory of gravitation and flat space”, Proc. R. Irish Acd., 52 (1948), 11 | MR | Zbl