Initial boundary value problem for Sobolev type nonlinear equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper following initial boundary value problem is considered. $$\left\{\begin{array}{l} A\left(\frac{\partial u}{\partial t}\right)+Bu=f,\\ u(0)=u_0,\\ D^{\gamma}u\Big|_{\Gamma}=0, |\gamma|\leq m, \end{array}\right.$$ Operators A and B are nonlinear and have the following forms $Au=\displaystyle\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}A_{\alpha}(x,t,D^{\gamma}u),\quad Bu=\displaystyle\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}B_{\alpha}(x,t,D^{\gamma}u),~~|\gamma|\leq m.$ Conditions for functions $A_{\alpha}(x,t,\xi_{\gamma})$ and $B_{\alpha}(x,t,\xi_{\gamma})$ are obtained that lead to existence and uniqueness of solution of the problem in the spaces $L^p(0,T,W^m_p),~р\geq 2$.
@article{UZERU_2006_2_a2,
     author = {H. A. Mamikonyan},
     title = {Initial boundary value problem for {Sobolev} type nonlinear equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {33--40},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/}
}
TY  - JOUR
AU  - H. A. Mamikonyan
TI  - Initial boundary value problem for Sobolev type nonlinear equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 33
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/
LA  - ru
ID  - UZERU_2006_2_a2
ER  - 
%0 Journal Article
%A H. A. Mamikonyan
%T Initial boundary value problem for Sobolev type nonlinear equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 33-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/
%G ru
%F UZERU_2006_2_a2
H. A. Mamikonyan. Initial boundary value problem for Sobolev type nonlinear equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 33-40. http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/

[1] Sobolev S.L., “O dvizhenii simmetrichnogo volchka s polostyu, napolnennoi zhidkostyu”, PM TF, 1960, no. 3

[2] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. MMO, 9, GIFML, M., 1960, 455–505 | MR | Zbl

[3] Akopyan G.S., Shakhbagyan R.L., “A mixed problem for degenerate nonlinear systems of Sobolev type”, Izv. NAN Armenii. Matematika, 28:3 (1993), 18–30 | MR | Zbl

[4] Akopyan G.S., Shakhbagyan R.L., “Attractors of evolution systems of Sobolev type”, Izv. NAN Armenii. Matematika, 29:5 (1994), 21–30 | MR | Zbl

[5] Akopyan G.S., Shakhbagyan R.L., “A mixed boundary value problem for higher-order degenerate nonlinear equations of Sobolev type”, Izv. NAN Armenii Matematika, 30:1 (1995), 17–32 | MR | Zbl

[6] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[7] Russian Math. Surveys, 23:1 (1968), 45–91 | DOI | MR | MR | Zbl