Initial boundary value problem for Sobolev type nonlinear equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 33-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper following initial boundary value problem is considered.
$$\left\{\begin{array}{l}
A\left(\frac{\partial u}{\partial t}\right)+Bu=f,\\
u(0)=u_0,\\
D^{\gamma}u\Big|_{\Gamma}=0, |\gamma|\leq m, \end{array}\right.$$
Operators A and B are nonlinear and have the following forms
$Au=\displaystyle\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}A_{\alpha}(x,t,D^{\gamma}u),\quad Bu=\displaystyle\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}B_{\alpha}(x,t,D^{\gamma}u),~~|\gamma|\leq m.$ Conditions for functions $A_{\alpha}(x,t,\xi_{\gamma})$ and $B_{\alpha}(x,t,\xi_{\gamma})$ are obtained that lead to existence and uniqueness
of solution of the problem in the spaces $L^p(0,T,W^m_p),~р\geq 2$.
@article{UZERU_2006_2_a2,
author = {H. A. Mamikonyan},
title = {Initial boundary value problem for {Sobolev} type nonlinear equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {33--40},
publisher = {mathdoc},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/}
}
TY - JOUR AU - H. A. Mamikonyan TI - Initial boundary value problem for Sobolev type nonlinear equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2006 SP - 33 EP - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/ LA - ru ID - UZERU_2006_2_a2 ER -
%0 Journal Article %A H. A. Mamikonyan %T Initial boundary value problem for Sobolev type nonlinear equations %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2006 %P 33-40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/ %G ru %F UZERU_2006_2_a2
H. A. Mamikonyan. Initial boundary value problem for Sobolev type nonlinear equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 33-40. http://geodesic.mathdoc.fr/item/UZERU_2006_2_a2/