The optimal trajectory in partial-cooperative games
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2005), pp. 17-24
Cet article a éte moissonné depuis la source Math-Net.Ru
In an extensive form game is considered partial-cooperation. The optimal behavior and the method of finding the value of the game is represented for that game. During the game discussing the auxiliary games for finding distribution between players consisting coalition, and equilibrium condition by Nash, when the coalition is available. There is an example.
@article{UZERU_2005_2_a2,
author = {O. S. Mikaelyan and R. V. Khachatryan},
title = {The optimal trajectory in partial-cooperative games},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {17--24},
year = {2005},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2005_2_a2/}
}
TY - JOUR AU - O. S. Mikaelyan AU - R. V. Khachatryan TI - The optimal trajectory in partial-cooperative games JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2005 SP - 17 EP - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2005_2_a2/ LA - ru ID - UZERU_2005_2_a2 ER -
O. S. Mikaelyan; R. V. Khachatryan. The optimal trajectory in partial-cooperative games. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2005), pp. 17-24. http://geodesic.mathdoc.fr/item/UZERU_2005_2_a2/
[1] L. A. Petrosyan, D. A. Aleshin, “Znachenie dinamicheskikh igr s chastichnoi kooperatsiei”, Trudy instituta matematiki i mekhaniki UrO RAN, 6, no. 1, 2000, 160—172 | MR
[2] D. Aleshin, T. Tanaka, “The core and the dominance core in multi-choice multistage games with coalitions in a matrix form”, Proceedings of NACA98, International Conference on Nonlinear Analysis and Convex Analysis, 1998
[3] H. Chih-Ru, T. Raghavan, Games and Economic Behavior, 5 (1993), 240—256 | DOI | MR
[4] J.F. Nash, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | MR