Quick algorithm for solving floorplanning problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2005), pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article Stockmeyer’s theorem is generalized and a quick and practically effective algorithm for solving floorplanning problem is represented.
@article{UZERU_2005_1_a2,
     author = {Kh. M. Hayrapetyan},
     title = {Quick algorithm for solving floorplanning problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {27--33},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {hy},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2005_1_a2/}
}
TY  - JOUR
AU  - Kh. M. Hayrapetyan
TI  - Quick algorithm for solving floorplanning problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2005
SP  - 27
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2005_1_a2/
LA  - hy
ID  - UZERU_2005_1_a2
ER  - 
%0 Journal Article
%A Kh. M. Hayrapetyan
%T Quick algorithm for solving floorplanning problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2005
%P 27-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2005_1_a2/
%G hy
%F UZERU_2005_1_a2
Kh. M. Hayrapetyan. Quick algorithm for solving floorplanning problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2005), pp. 27-33. http://geodesic.mathdoc.fr/item/UZERU_2005_1_a2/

[1] L. J. Stockmeyer, “Optimal orientations of cells in slicing floorplan designs”, Information and Control, 57:2-3 (1983), 91–101 | DOI | MR

[2] R. E. Korf, Optimal Number Partitioning, California, Los Angeles, 1995